首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了M963合金在975℃×225MPa条件下蠕变过程中的组织演化及断裂机理.结果表明M963合金的蠕变曲线呈现出明显的3个阶段且稳态蠕变速率较低;蠕变过程中,γ'相粒子逐渐筏形化,由初始阶段分布在γ基体中的立方状孤立相转变为蠕变后期包围γ相的连续相;在枝晶干上有颗粒状M6C碳化物析出;蠕变变形机制从初始阶段的Orowan绕过γ'相粒子变为蠕变后期的位错切过γ'相粒子.  相似文献   

2.
研究了一种[001]取向镍基单晶合金的蠕变特征和变形期间的微观组织结构.结果表明:在低温高应力和高温低应力条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率;在700℃,720MPa条件下,透射电镜(TEM)观察显示蠕变期间的变形特征是1/2110位错在基体中运动,发生反应形成1/3112超肖克利(Shockley)不全位错,切入γ′相后产生层错.在900℃,450MPa条件下,没有出现蠕变初始阶段,γ′相从立方体形态演化成筏形;在加速蠕变阶段,多系滑移开动,大量位错剪切γ′相是变形的主要机制.在1070℃,150MPa条件下,γ′相逐渐转变成筏形组织,并在γ/γ′界面处形成致密的六边形位错网,位错网可以阻止位错切入γ′相,提高蠕变抗力;在蠕变后期,位错以位错对形式切入γ′相,是合金变形的主要方式.  相似文献   

3.
通过测定一种单晶镍基高温合金的高温拉伸蠕变曲线和位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出不同蠕变阶段的激活能和相关参数.结果表明在蠕变期间,内摩擦应力σ0随外加应力σ的增加而略有提高,但随温度升高而明显下降.在实验温度和应力范围内,在不同蠕变阶段,具有不同的激活能Q,时间指数m和结构常数Bi.因此,合金在不同蠕变阶段具有不同的蠕变机制.蠕变初期,形变机制是位错在基体通道中运动;而大量位错切入筏状γ'相中是蠕变第3阶段的主要特征,在γ'/γ两相界面产生空洞及空洞的聚集和微裂纹扩展是蠕变断裂的直接原因.  相似文献   

4.
通过蠕变曲线测定及组织形貌观察,研究了一种镍基单晶合金的蠕变行为和变形特征.结果表明:单晶合金在试验的温度和应力范围内,对施加应力和温度有明显的敏感性.由所得数据测算出合金的蠕变激活能和应力指数.蠕变初期在施加温度和应力场的作用下,立方γ′相逐渐转变成与施加应力轴方向垂直的N型筏状结构.稳态蠕变期间,合金的变形机制是位错攀移越过筏状γ′相,由于高温蠕变稳态阶段形成的N型γ′相筏状组织厚度较小,位错易于攀移,因而合金具有较大的应变速率.蠕变后期,由于塑性变形,在近断口处筏形γ′相转变成与应力轴方向呈45°角的形貌,合金的变形机制是位错剪切筏状γ′相.  相似文献   

5.
通过蠕变曲线测定和组织形貌观察,研究了FGH95合金的蠕变特征与变形机制.结果表明:经高温固溶及"盐浴"冷却后,FGH95合金的组织结构由细小γ'相及粒状碳化物弥散分布于γ基体所组成,由于沿晶界不连续析出的粒状(Ti,Nb)C相可提高合金的晶界强度,并抑制晶界滑移,故使其在650℃、1 034MPa条件下有较小的应变速率和较长的蠕变寿命.合金在蠕变期间的变形机制是位错切割γ或γ'相,其中,当(1/2)<110>位错切入γ相,或<110>超位错切入γ'相后,可分解形成(1/6)<112>肖克莱不全位错或(1/3)<112>超肖克莱不全位错+层错的位错组态;蠕变后期,合金的变形特征是晶内发生单取向和双取向滑移,随蠕变进行位错在晶界处塞积,其引起的应力集中致使裂纹在晶界处萌生及扩展是合金的蠕变断裂机制.  相似文献   

6.
通过对不同Re含量镍基合金进行室温、高温X射线衍射谱线测定及持久性能测定,研究了Re含量及温度对镍基合金中γ、γ'两相晶格错配度及持久寿命的影响规律.结果表明:随Re含量增加,合金中γ、γ'两相的晶格常数增大,两相界面的晶格错配度及错配应力减小,致使蠕变期间合金中γ'相的筏形化速率降低,并可较大幅度地提高合金在高温区间的持久寿命.与γ'有序相比较,无序的γ相原子结合力较弱,且热容较大,致使其有较大的膨胀系数,故随温度提高,合金中两相的晶格错配度绝对值增大.合金中γ、γ'两相的晶格常数、热膨胀系数随温度变化服从指数规律;在试验的温度范围内,提出的数学表达式在高温区间,可较好地模拟γ、γ'两相的膨胀特性.  相似文献   

7.
铸造镍基高温合金K35的高温力学和高温氧化行为   总被引:1,自引:0,他引:1  
研究了某燃气轮机动力涡轮叶片材料K35合金的高温拉伸、蠕变和持久以及氧化动力学行为.结果表明,在室温至950℃的温度范围内,K35合金的抗拉强度、屈服强度、延伸率等瞬时拉伸性能与IN738合金相当,但K35合金的成本远低于后者.K35合金的高温蠕变曲线表现为较短的减速阶段和加速阶段以及非常长的稳态阶段.在900℃、150~200MPa条件下的表观应力指数值是13,说明K35合金具有较高的蠕变抗力.TEM观察表明,K35合金的蠕变变形机制受控于位错通过球形γ'相的Orowan绕越过程.SEM观察表明K35合金的蠕变断裂是一个沿晶破坏过程,蠕变断裂特性服从Monkman-Grant规律.在同一温度下,K35合金的高温比强度与IN738合金相当.K35合金800℃的高温氧化动力学曲线服从抛物线规律,属于完全抗氧化级.K35合金的表面氧化膜以Cr2O3为主,也含有少量的NiCr2O4尖晶石和TiO/TiO2相.K35合金在高温氧化期间发生沿晶界或枝晶间的内氧化行为.氧化层分为3部分,分别是疏松的氧化外层,致密的氧化内层和内氧化层.  相似文献   

8.
通过计算合金元素的扩散迁移率和EDAX分分析,研究了γ'相筏形化过程中元素的扩散规律.结果表明分配比值大的合金元素,扩散迁移率较大;分配比值小的合金元素,扩散迁移率较小.由于W元素具有较大的原子半径,较小的分配比值和扩散系数,因而相对稳定.所以W元素可阻碍其它元素的扩散速率,随其含量的增加,合金中γ'相筏形化时间延长.  相似文献   

9.
研究了800℃条件下最长时间达到3 000 h的长期热暴露对IN792LC单晶高温合金显微组织演变及蠕变行为的影响。结果表明:长时间热暴露后,γ′相球化生长均匀分散在γ基体内,γ′相的粗化行为符合Lifshitz-Slyozov-Wagner(LSW)模型。热暴露后一些不连续碳化物在γ/γ′共晶组织周围析出,但无拓扑密排相(TCP)生成。对长期热暴露后的合金进行了760℃/662 MPa下蠕变断裂寿命测试,随着热暴露时间延长,由于组织退化,合金蠕变寿命降低,而断裂伸长率不断提高。当热暴露达到3 000 h时,合金蠕变断裂寿命降低81.1%。合金蠕变寿命的减少主要由γ′相粗化、碳化物的退化以及柯肯达尔孔洞增大导致。分析发现在热暴露后共晶相周围MC碳化物分解形成的M23C6碳化物,空位在碳化物处塌陷聚集成微孔,加速了裂纹的萌生与拓展。此外,由于热暴露后合金蠕变过程中的位错网络被破坏,位错切入γ′相运动,从而进一步降低蠕变断裂寿命。研究结果为IN792LC单晶高温合金近服役温度条件下使用寿命预测提供了参考。  相似文献   

10.
对一种高Cr镍基铸造高温合金的铸态、固溶态和标准热处理态的组织进行了光学和电子显微镜观察,并进行了相分析.测定了不同时效时间,即沉淀相析出过程对合金力学性能的影响.结果表明,合金中沉淀相有α-Cr相、γ'相和少量的M12C6及M6C相.存在含量为10%左右的α-Cr相是本合金的显著特点.随着沉淀相析出过程的延长,合金的硬度、拉伸和持久性能不断提高.但是各性能提高的速度不同,由快到慢的顺序依次为硬度、拉伸强度和持久寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号