首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
工艺条件对煤—废塑料在焦炉气气氛下共热解特性的影响   总被引:4,自引:1,他引:3  
将先锋褐煤与5%聚乙烯(PE)混合加入10g固定床反应器中通入焦炉煤气在不同压力、升温速率及终态温度下共热解。结果表明,在实验压力范围内(0.1MPa ̄3MPa)添加废塑料可实现煤-焦炉气常压热解达到甚至超过高压(3MPa)下不加PE时热解的焦油收率,同时增加半焦收率,明显降低热解水分。降低升温速率可明显增加焦油收率,降低水分。添加废塑料还可实现煤-焦炉气低温热解达到甚至超过高温热解时的焦油收率,  相似文献   

2.
结合煤加氢热解最新研究进展,从煤加氢热解焦油形成机理出发,综合论述了提高热解焦油产量的6条途径和方法。提出煤-焦炉气催化加氢热解的新构想,以期实现“煤→热解煤气内循环→焦油”新工艺。  相似文献   

3.
煤热解富产焦油的工艺评述   总被引:1,自引:0,他引:1  
廖洪强  李文 《煤炭转化》1996,19(4):18-23
本文在综合评述煤加氢热解工艺、煤甲烷共热解工艺及煤焦炉气共热解工艺的基础上,提出煤焦炉气催化热解新方法,以期实现煤催化热解富产焦油的新工艺,为煤非燃料利用开辟一条新的途径。  相似文献   

4.
焦炉气气氛下煤加氢热解研究进展   总被引:6,自引:3,他引:6  
煤-焦炉气共热解是力图降低传统煤加氢热解工艺投资和工业运转 和的新工艺,近年来已引起人们广泛注意。本文平述了近期国内外利用焦炉气代替氢气作煤加氢热解反应气工艺的可行性以及热解温度和焦炉气组分对热角产品影响方面的研究进展。  相似文献   

5.
不同气氛下煤—废塑料共热解特性的对比研究   总被引:1,自引:2,他引:1  
实验在10g固定床反应器中考察了兖州高硫煤与5%聚乙烯(PE)混合分别在焦炉煤气(COG),H2和N2气氛下共热解产物收率及硫、氮分布。结果表明,与原煤热解结果相比,添加5%PE后兖州烟煤在焦炉气气氛下共热解中净煤热解焦油(扣除PE自身热解产油量)增加5.7%,水分降低1.8%,增加的焦油量与降低的水分分别占原煤热解焦油及水分产量的23.2%和17.3%;在H2气氛下热解焦油收率略有降低,半焦和水  相似文献   

6.
选用山东黄县褐煤分别在高压热天平及10g固定床反应器中与合成气共热解对其热失重行为、不同热解终态温度下产物分布及热解半焦燃烧特性进行了详细考察。结果表明,煤-合成气共热解具有与加氢热解基本相似的热失重行为即具有较为明显的热分解和加氢热解失重峰。固定床热解总转化率、焦油收率及热解水分均随终态温度升高而增加,热解半焦燃烧着火点、燃尽温度均随热解终温升高而增加。  相似文献   

7.
常娜  陈延信  甘艳萍 《煤化工》2013,41(1):47-50
在热重分析仪及自制的微负压煤热解实验装置上,对陕北烟煤、橡胶及两者的混合物进行了实验研究。结果表明,煤与橡胶共热解时存在协同效应,并且随着热解温度增加,协同效应逐渐增强。橡胶是共热解反应的供氢物质,同时橡胶热解产生较多的甲烷,有利于煤中大分子的裂解,可提高煤热解的焦油收率。在热解温度为800℃时,任意橡胶质量分数的煤与橡胶混合物共热解的焦油收率均比线性叠加值高,当橡胶质量分数为20%时,协同作用最为显著。  相似文献   

8.
为考察原料煤中水分对神东煤热解产物分布的影响,通过格金试验和固体热载体小试试验研究了神东煤中水分对热解特性的影响,得到神东煤在不同水分下热解产物的分布规律。格金试验表明,水分对神东煤热解产物中焦油和热解气收率有显著影响。随着水分降低,神东煤热解产物中焦油收率从9.98%降至4.92%,热解气收率从8.47%上升至11.07%,热解水收率从2.74%上升到5.94%。小试试验结果与格金试验趋势基本相同。随着原料煤中水分的降低,焦油收率下降,热解气收率上升;未经干燥的原煤在不同温度下热解的焦油收率比干燥后煤样平均高2.17%,热解气收率平均低1.58%。热解温度对H2和CO比例影响较大,对其他气体比例影响较小。研究结果表明,水分对神东煤的热解过程及其热解产物分布有显著影响,热解原料煤中水分的增加有利于抑制神东煤热解水和热解气的生成,提高焦油收率,因此有望通过控制原料煤中的水分来调节热解产物的分布。  相似文献   

9.
为研究加压固定床气化过程中热解区和气化区的反应,模拟固定床富氢气氛热解与半焦气化过程,利用加压富氢热解装置考察了压力、加热终温以及富氢比例对煤热解的影响,分析了各因素对热解影响的机理,以富氢气氛热解半焦为原料,通过加压热重分析仪进行试验研究,研究不同温度和不同热解半焦原料的条件下碳转化率与CO_2反应速率随时间的变化规律,分析富氢比例对气化反应活性的影响。结果表明:常压富氢气氛热解试验中,随着富氢比例的升高,提供大量H,H浓度增大,煤在热解过程中自由基会不断与H结合生成稳定组分,其中包括大量小分子的挥发物以及部分焦油析出,使半焦中挥发分降低0.69%,半焦收率降低4.8%;加压条件下半焦收率较高,半焦收率随压力的增大变化幅度不大,且没有明显规律,挥发分总体逐渐降低,但变化较小;随着终温的升高,挥发分析出量逐渐升高,伴随着挥发分析出,富氢氛围中的H将与自由基结合生成小分子结构而逸出,半焦收率与挥发分均逐渐降低;增加富氢比例能提高半焦的成熟程度,富氢比例由0增加到35%,H浓度增大,煤中小分子可迅速加氢生成挥发物,同时大分子也会加氢变为稳定结构,半焦挥发分降低了1.46%,半焦收率降低了2.50%;富氢热解能明显促进CO和CH_4的生成,在35%H_2时产量分别达到91.2和63.8 mL/g。由气化特性试验可知:提高气化反应温度,有助于提高富氢半焦与CO_2的气化反应性;富氢气氛与惰性气氛下热解半焦的气化反应活性相近,表明加氢热解能够提高焦油产率与焦油品质,同时对半焦的气化活性影响不大。  相似文献   

10.
以半焦在相对高温下发生缩聚反应析出的氢作为氢源,在同一反应器内实现了煤-半焦耦合条件下的含氢气氛煤解聚过程,研究了半焦床层在不同温度(650℃,700℃和750℃)下对煤热解产物分布及其品质的影响.结果表明:耦合热解(CSP)过程较单煤热解(CP)过程的焦油产量增加,且随着半焦床层温度的升高而逐渐增大,750℃时焦油收率提高了16%.焦油模拟蒸馏实验表明,耦合热解过程的焦油中轻质组分含量增加,沥青组分含量显著减少,半焦床层温度在650℃(CSP650),700℃(CSP700)和750℃(CSP750)时,CSP过程沥青含量比CP过程沥青含量分别降低了28.83%,40.77%和44.28%.焦油的GC×GC-MS联用实验表明,耦合热解焦油的芳香环侧链取代结构物质含量增加.原煤半焦的TG-MS实验表明,半焦在高温热解时由于发生裂解、缩聚反应而析出H_2和CH_4,这是本研究中加氢热解的氢源.  相似文献   

11.
Direct post-cracking of volatile material produced by hydropyrolysis of bituminous coal at 580 °C under hydrogen pressure 1–5 MPa has been investigated at 700 °C under constant hydrogen pressure with 0.1 and 1 s residence times. Results show that pressure promotes the formation of benzene, toluene and xylenes (BTX) and naphthalenes during post-cracking, while phenol, cresols and xylenols (PCX) are not affected. The transformation of heavy Ohenols into PCX is not influenced by the hydrogen pressure. During post-cracking the BTX yield can be more than doyble that reached in simple hydropyrolysis. Post-cracking applied to high oil yield hydropyrolysis processes will be a valuable BTX source.  相似文献   

12.
Pyrolysis and hydropyrolysis experiments at different temperatures, heating rates and pressures have been conducted on a sample of sunflower pressed bagasse to investigate the effect of particle size, sweep gas velocity, and hydrogen pressure on the product yields and characteristics. In contrast to coal and oil shales, char and oil yields from sunflower pressed bagasse were found to be largely independent of particle size and sweep gas velocity in a Heinze retort with the oil yield of ≈ 40% w/w being the same as that from a well-swept fixed-bed reactor in which a much smaller sample size was used. The use of high hydrogen pressure ( > 50 bar) increased the oil yields by up to ≈ 10% w/w but these increases are much greater when expressed on a carbon basis due to the reduced oxygen contents of the oils. Even at low pressure, it has been estimated that ≈ 40% of the carbon aromatized during pyrolysis.  相似文献   

13.
南台子煤催化加氢热解产物分布的初步研究   总被引:1,自引:0,他引:1  
以新疆伊犁南台子煤为考察对象,在常压固定床反应器上和温度500℃~700℃范围内,系统研究了以氧化铁为主催化剂和硫为助剂时,催化加氢热解过程中产物的分布.结果表明,氧化铁的加入最高可使焦油产率增加约2%,半焦产率下降约4%,水产率增加约4%,气产率略有降低.助剂硫的加入有利于与铁生成Fe1-xS,从而有利于煤的催化加氢热解.  相似文献   

14.
Samuel Furfari  René Cyprès 《Fuel》1982,61(5):453-459
The sulphur distribution among the char, oil and gas obtained after hydropyrolysis of a high-sulphur (4.3 wt%) and high-calcite (7.3 wt%) coal has been investigated. The chars were examined by scanning electron microscopy coupled with an energy dispersion analyser and by X-ray diffraction. The proportion of the combustible and non-combustible sulphur in the char has been determined. Hydrogen pressure promotes reaction with sulphur but the sulphur content of the chars increases from 3 to 4.5 wt% when the temperature is increased from 616 to 845 °C. This increase in sulphur is a consequence of the reaction between hydrogen sulphide, produced during hydropyrolysis of coal, with the alkaline-earth mineral matter to produce alkaline-earth sulphide. The SEM and X-ray diffraction images show that in the char formed at 780 °C the sulphur, calcium and magnesium are localized in the same compounds. This is not the case when hydropyrolysis is performed at lower temperature. Combustion of the chars produces only <0.6 S02 MJ?1 compared to 2.2 g S02 MJ?1 for untreated coal. X-ray diffraction has shown that the sulphur in the char is oxidized and fixed in the ashes mainly as CaS04 and also some as MgS04. Although sulphur remains partly in the chars after hydropyrolysis, 75% of it is non-combustible. The hydropyrolysis of a high-sulphur coal containing calcite, produces a char which may be used as a clean fuel.  相似文献   

15.
René Cyprès  Samuel Furfari 《Fuel》1981,60(9):768-778
Fixed-bed hydropyrolysis has been investigated by treating 100 g coal up to 900°C and 10 MPa. The devolatilization rate of Beringen coal (32.8 wt% volatile matter) treated on a fixed bed approximates to that obtained by flash hydropyrolysis. However, the oil yield is smaller because of the slower heating of the coal and the rather longer residence time of the primary volatile matter in the reaction space. The product gas is mainly methane. The oil composition depends on the temperature of pyrolysis. The benzene content of the oil rises with temperature. At constant temperature, the influence of hydrogen partial pressure is important between 0–1 MPa. At higher pressure, the yields and compositions vary only slightly with pressure. It has also been shown that from 580°C pyrolysis under hydrogen yields an additional quantity of water, when compared with pyrolysis under inert atmospheres or under atmospheric pressure. This additional water comes from the hydrogenation reactions of the hydroxyl functions of heavy phenols and xylenols. This implies a hydrogen consumption (from 0.2–0.3 wt% of the coal), varying with the pyrolysis temperature.  相似文献   

16.
O. Onay  O.M. Kockar  T.R. Tyagi 《Fuel》2006,85(3):382-392
This paper discusses the maximisation of the yields of useful bio-oils generated from seeds and nut-shells both by extraction and by hydropyrolysis. The formation and the composition of the bio-oils are also discussed.Powdered (<0.25 mm diameter) Rapeseed, Linseed and Safflower seed and Hazel nut and Walnut shells, that is, fresh precursors of liptinite, have been characterised by their elemental analyses, infra-red and NMR spectra. Bio-oils obtained both by extraction and by slow hydropyrolysis to 520 °C at moderate pressure in the presence of ammonium dioxydithiomolybdate have been compared by the same analyses and by gas chromatography. Consistent with previous work [Hardy JA. A greener future with biodiesel. Green Chem 2001 G56-G57], extraction of the seeds with organic solvents, including Diesel oil, gave yields of up to 40% together with an uninteresting residue. However, subsequent saponification of the residues gave further yields of oil. Hydropyrolysis removed oxygen from the seeds as water and as oxides of carbon to generate bio-oil in yields of up to 75%. Whereas little oil could be extracted from the nut-shells, hydropyrolysis gave oil yields of ∼40%. Some char was also formed, suggesting that optimisation of the hydropyrolysis might give even larger yields of oil.  相似文献   

17.
应用固定床反应器研究了铁基催化剂Fe2O3、Fe S、Fe(NO3)3对伊犁南台子煤催化加氢热解产物分布和半焦结构的的影响。结果表明:添加铁基催化剂后,加氢热解中气产率增加最大为17.78个百分点,半焦产率下降最大为21.41个百分点。利用BET法对半焦进行了结构分析,结果发现,添加Fe(NO3)3后所制得的半焦的比表面积和总孔体积分别为不添加催化剂所制得的半焦的6倍和1.7倍。从TG和DTG图中发现,加入铁基催化剂后,半焦活性增加,其中Fe(NO3)3的作用最明显,热失重速率最大,说明半焦活性较大。  相似文献   

18.
W.-C Xu  M Kumagai 《Fuel》2003,82(3):245-254
The behavior of sulfur transformation during rapid hydropyrolysis of coal was investigated using a pressurized, continuous free fall pyrolyzer under the conditions of temperature ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa. The yields of sulfur converted to gas, tar and char were determined, together with the analyses of sulfur form distributions in coals and chars. The results showed that the decomposition of inorganic sulfur species was affected only by the temperature, while the increases in temperature and hydrogen pressure obviously enhanced the removal of organic sulfur from coal. The extent of organic sulfur removal was proportional to the coal conversion, depending on coal type. A significant retention of gaseous sulfur products by the organic matrix of the char was observed during hydropyrolysis of a Chinese coal above 1023 K, even under the pressurized hydrogen atmosphere. The kinetic analysis indicates that the rate of organic sulfur removal from coal was 0.2th-order with respect to the hydrogen pressure, and the activation energy for total sulfur removal and organic sulfur removal is 17-26 and 13-55 kJ/mol, respectively. The low activation energies suggest that the transformation and removal of sulfur from coal might be controlled by the diffusion and/or thermodynamic equilibrium during hydropyrolysis under the pressurized conditions.  相似文献   

19.
《Fuel》2002,81(11-12):1491-1497
The process and the mechanism of multi-stage hydropyrolysis (MHyPy) of coal were investigated by analyzing the products of different MHyPy processes in detail. The results showed that the suitable holding temperature was near the peak temperature (350–500 °C) at which more free radicals were produced rapidly, thus more oil was formed and the hydrogen utilization efficiency was increased. The cleavage of organic functional groups in char from MHyPy was mostly affected by the pyrolysis temperature. The effect of retention was to change the product distribution through stabilization of the free radicals and hydrogenation of the heavier products. In the holding stage the specific surface area and average pore volume of the char were increased due to the escape of more hydrogenation products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号