首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
随着计算机软、硬件的进步,人们利用信息技术产生和搜集数据的能力大幅度提高.作为数据挖掘的重要研究课题之一,时间序列的挖掘与预测近几年发展迅速.本文时时间序列的分段线性化表示进行了研究,采用新的分段线性化表示方法建立了序列相似性度量准则,弥补了以往度量准则对时间轴上伸缩的变化敏感的问题.新的表示方法和相似性度量准则使时间序列数据更容易应用传统的数据挖掘方法.  相似文献   

2.
李霞 《计算机仿真》2021,38(1):291-294
针对数据挖掘过程中对异常数据检测的准确率较低、分类速度较慢,导致数据分类准确率较低、效率较差的问题,提出基于连续密度隐马尔可夫的时间序列分类算法.构建时间序列变化趋势分割点目标函数,利用贪婪搜索法求解时间序列分段值,提取序列变化趋势特征得到数据主要信息,提升数据分类的准确性;改进帧内特征表达准确性,使用因子分析矩阵高斯...  相似文献   

3.
分段线性表示是时间序列降维的有效方法。在总结分析序列趋势变化特点的基础上,提出了一种基于趋势转折点的时间序列分段线性表示算法。首先定义了趋势转折点作为时间序列分段点的备选集,以点到区域的距离度量趋势转折点的重要性,再根据给定的阈值选择重要趋势转折点作为分段点,对时间序列进行分段线性表示。通过与其他6种方法进行实验比较,结果表明:所提方法在具有较好的拟合质量和适应能力以及对转折点明显的序列,都表现出较强的抗噪声干扰能力。  相似文献   

4.
基于函数的时间序列分段线性表示方法   总被引:1,自引:0,他引:1  
谢福鼎  王赫楠  张永  孙岩 《计算机科学》2011,38(11):153-155,160
考虑到时间序列的时间特性对不同区段的影响以及时间序列数据动态增长的实际情况,在RPAA ( Reversed Piecewise Aggregate Approximation)和PAA(Piecewise Aggregate Approximation)方法的基础上,提出了一种新的时间序列分段线性表示方法FPAA(Founction Piecewise Aggregate Approximation)。FPAA方法通过定义函数影响因子,克服了RPAA和PAA方法的不足。该方法具有线性时间复杂度,满足下界定理,并且支持时间序列的在线划分。实验表明,与PAA方法和RPAA方法相比,所提出的方法可以较有效地进行时间序列的在线查询。  相似文献   

5.
基于时间序列趋势转折点的分段线性表示*   总被引:8,自引:2,他引:8  
在充分利用时间序列时变特征的基础上,以有效地提取序列中的趋势和压缩原始数据为目标,提出了基于时间序列趋势转折点的分段线性表示方法。该方法在有效地提取序列中的趋势和压缩原始数据的同时,能够随着时间序列长度的增长对序列进行划分,具有高效、实现方法简便、效果直观的优点,对于不同领域的数据适应性良好。  相似文献   

6.
实际过程中采集到的时间序列数据通常是海量数据,在原时间序列数据上直接进行数据挖掘的效率通常是低下的,有时甚至不可行,因此就须将时间序列在更高的层次上进行表示。借鉴时间序列线性分段的基本思想,提出了一种自适应误差约束的分段线性表示方法,该方法在查找出时间序列特殊点的基础上,通过给定误差e进行调节,可以自动地产生拟合线段的数目。不仅可以压缩数据,去除噪声,还能得到时间序列的模式变化特征。与一般的分段线性表示相比,文中方法的拟合误差更小,适应能力更强。  相似文献   

7.
时间序列分类问题的算法比较   总被引:8,自引:0,他引:8  
杨一鸣  潘嵘  潘嘉林  杨强  李磊 《计算机学报》2007,30(8):1259-1266
时间序列分类是时间序列数据分析中的重要任务之一.不同于时间序列分析中常用的算法与问题,时间序列分类是要把整个时间序列当作输入,其目的是要赋予这个序列某个离散标记.它比一般分类问题困难,主要在于要分类的时间序列数据不等长,这使得一般的分类算法不能直接应用.即使是等长的时间序列,由于不同序列在相同位置的数值一般不可直接比较,一般的分类算法依然还是不适合直接应用.为了解决这些难点,通常有两种方法:第一,定义合适的距离度量(这里,最常用的距离度量是DTW距离),使得在此度量意义下相近的序列有相同的分类标签,这类方法属于领域无关的方法;第二,首先对时间序列建模(利用序列中前后数据的依赖关系建立模型),再用模型参数组成等长向量来表示每条序列,最后用一般的分类算法进行训练和分类,这类方法属于领域相关的方法.长期以来,研究者往往只倾向于使用其中一种算法,而这两类算法的比较却比较缺乏.文中深入分析了这两类方法,并且分别在不同的合成数据集和实际数据集上比较了两类方法.作者观测到了两类算法在不同因素影响下的性能表现,从而为今后发展新的算法提供了有力依据.  相似文献   

8.
时间弯曲距离受最优路径和距离计算方式限制,累加距离不能有效区分时间序列的类型。标识极值能够获得时间序列的区间性特征,相应的特征标识能够对距离相同但趋势不同的时间序列进行有效分类。提出分析同类时间序列的时间弯曲距离结果获得典型时间序列,根据极值点进行分段,在标准差的基础上形成特征标识。对达到距离要求的目标时间序列和典型时间序列进行标识匹配,最终明确其类型。所提算法解决了时间序列分类过程中时间弯曲距离度量局限性的问题。最后,证明了算法的理论可行性,并给出了其整体流程。实验结果表明,基于极值分段特征标识的时间序列分类方法具有良好的分类性能。  相似文献   

9.
基于时态边缘算子的时间序列分段线性表示   总被引:1,自引:1,他引:1  
时间序列的分段线性表示算法通常基于单一的启发式规则,难以适用于不同数据特征的时间序列。借鉴了边缘算子的思想来提取时间序列的边缘点,提出了一种基于时态边缘算子的时间序列分段线性表示算法。在来自不同领域的公开数据集上进行的实验结果表明:与两种主要的分段线性表示算法相比,该算法具有更好的拟合性能,并且更为稳定,能够适用于各类不同数据特征的时间序列。  相似文献   

10.
在时间序列数据挖掘中,在线检测在时间上存在任意缩放的相似模式是一个具有挑战性的问题.本文对基于模型匹配的分段半马尔可夫模型进行改进,通过引入偏移量分布、振幅差值分布和前项状态,克服该模型参数难以确定、鲁棒性差的缺点.实验表明,改进分段半马尔可夫模型能够快速准确检测出在时间上存在任意缩放的相似模式.  相似文献   

11.
丁剑  王树英 《计算机科学》2016,43(5):257-260, 293
根据时间序列数据维度高、实值有序、数据间存在自相关性等特点,对时间序列分类过程进行研究。研究了当前比较流行的时间序列分类方法;从图像处理的角度出发,提出了一种将图片信息转化为时间序列数据的ITTS方法。shapelets作为最能够表示一条时间序列的子序列,随着时间的推移,这个特征序列可能会动态地发生变化。基于这样的思想,提出了一种基于动态发现shapelets的增量式时间序列分类算法IPST。该算法能够较好地动态发现当前最优的k个shapelets,从而提高时间序列分类的准确度。 得到 的shapelets集合还可以与多个传统的分类器结合,从而获得更佳的分类效果。  相似文献   

12.
基于分割模式的时间序列矢量符号化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对符号化聚合近似算法(SAX)中时间序列必须等长分割的缺陷,提出一种基于分割模式的时间序列符号化算法(SMSAX)。利用三角阈值法对随机抽样的时间序列进行特征提取,计算时间序列最大压缩比,将其作为时间窗宽提取分割点,进而求出时间序列的分割模式。利用得到的分割模式对时间序列进行分割降维,通过均值和波动率对分割后的子序列进行向量符号化。根据时间序列特征对其进行不等长分割,并加入波动率消除奇异点的影响。实验结果表明,SMSAX能获得比SAX更精确的结果。  相似文献   

13.
基于层次聚类的时间序列在线划分算法   总被引:2,自引:0,他引:2  
如何在线划分数据序列以满足持续动态增长的海量数据流需求正成为序列挖掘领域中的重要内容之一.本文提出一种新的基于层次聚类的在线序列分割算法(OSHC).利用数据序列的有序性特征,构造一种存储划分特征的链表结构SF-List.该算法通过一次扫描数据库实现数据序列的在线划分,时间复杂度为O(n).利用SF-List 中保存的划分特征信息,历史信息的快速查询成为可能.实验结果表明OSHC算法具有良好的划分性能和扩展性能.  相似文献   

14.
基于序列重要点的时间序列分割   总被引:6,自引:1,他引:6       下载免费PDF全文
时间序列包含的数据量大、维数高、数据更新快,很难直接在原始时间序列上进行数据挖掘。该文提出一种基于序列重要点(SIP)的时间序列分割算法——PLR_SIP,用SIP组成的直线段近似描述时间序列。将SIP作为时间序列的分割点,反映时间序列的主要特征,降低时间序列的维数,使整体误差达到最小。  相似文献   

15.
结合层级实时记忆(Hierarchical Temporal Memory,HTM)模型与基于模式集的遗传时间序列分割算法各自的优点,用基于HTM的适应值函数替换原基于模式集的适应值函数,提出基于HTM的遗传时间序列分割算法。该算法可实现时间序列的分割及其相应子序列的分类识别。同时,针对HTM对训练样本的要求,提出一种基于模式集的HTM训练样本生成算法。最后在股票序列上验证了这2种算法的有效性。   相似文献   

16.
《软件》2019,(12):195-200
时间序列数据具有数据量大、维度高等特点,对时间序列数据进行挖掘之前通常先进行分段预处理。传统的基于特殊点分段算法往往只关注该特殊点相邻点或相邻特殊点的变化情况,不能有效表示该特殊点左右两侧的中长期变化趋势,本文提出一种基于趋势转折点边界面积的时间序列分段算法。该方法首先找出趋势转折点,之后寻找该点左右两侧维持趋势的边界点,在寻找边界时允许轻微波动,最后计算这三点构成的面积,以此代表该点的重要性。该算法在真实工业生产数据上实验效果良好,并通过不同领域公共数据集与其他算法进行比较,证明算法有效。  相似文献   

17.
郝石磊  王志海  刘海洋 《软件学报》2022,33(5):1817-1832
时间序列分类问题是时间序列数据挖掘中的一项重要任务, 近些年受到了越来越广泛的关注. 该问题的一个重要组成部分就是时间序列间的相似性度量. 在众多相似性度量算法中, 动态时间规整是一种非常有效的算法,目前已经被广泛应用到视频、音频、手写体识别以及生物信息处理等众多领域. 动态时间规整本质上是一种在边界及时间一致性约束下...  相似文献   

18.
时间序列数据广泛存在于我们的生活中,吸引了越来越多的学者对其进行深入的研究.时间序列分类是时间序列的一个重要研究领域,目前已有上百种分类算法被提出.这些方法大致分为基于距离的方法、基于特征的方法以及基于深度学习的方法.前两类方法需要手动处理特征和人为选择分类器,而大多数的深度学习方法属于端到端的方法,并且在时间序列分类...  相似文献   

19.
史明阳  王鹏  汪卫 《计算机工程》2020,46(5):131-138
时间序列分割与状态识别是一项重要的时间序列挖掘任务,可用于识别被监测对象的运行状态,然而目前多数无监督时间序列分割算法得到的结果无法满足用户的状态识别期望。为实现符合用户意图的时间序列分割,提出一种有监督的时间序列分割算法。构造特征集合并自动训练特征概率模型参数,以此构建特征高斯概率分布模型进行相关序列的特征设计,同时利用匹配损失计算和改进的贪心策略设定特征权重约束,通过增加分割位置约束条件及增量计算2种优化方式提高分割效率。在多个真实数据集上的实验结果表明,与pHMM和AutoPlait算法相比,该算法可以全面表达状态类别,对时间序列进行更精准的分割。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号