共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
《计算机科学与探索》2019,(12):2149-2160
自然环境中的人脸图像大部分带有遮挡,这对于人脸识别一直是巨大的挑战,用于人脸识别的主流深度模型对于遮挡人脸图片并不具有特别好的识别性能。针对深度模型由于遮挡的存在以及遮挡位置不确定所导致的识别率下降的问题,提出一种结合深度学习和特征点遮挡检测的PCANet下的遮挡定位人脸识别算法。分类器用于关键点检测,使用PCANet深度学习模型进行特征提取,形成支持向量机(SVM)训练模型组。遮挡判别分类器定位遮挡,结合特征模型组完成有遮挡人脸识别任务,并且对于表情变化有很强的鲁棒性。实验结果表明,该算法对于常见遮挡类型取得了非常好的效果,对于大面积遮挡的极端类型也具有很高的识别率。 相似文献
3.
《计算机应用与软件》2018,(2)
随着深度学习技术的发展,人脸识别在受控环境下的准确率已经达到了非常理想的效果。然而,真实环境下获取的人脸图像往往因为遮挡而难以识别。针对遮挡条件下的人脸识别准确率不高、稳定性差的问题,结合传统的人脸分块和深度卷积神经网络,提出一种基于分块的有遮挡人脸识别算法。基于人脸特征点定位的结果进行人脸分块,使用一种改进的轻量级卷积神经网络进行各个人脸区块的特征提取;利用多分类网络结合输入区块的额外信息进行人脸区块的遮挡判别;结合人脸块特征与遮挡二分类判别结果获取表征遮挡人脸的特征。实验结果表明,经过以上步骤提取出的特征对遮挡具有较强的鲁棒性,并且在满足一定的条件下,即使人脸由大面积遮挡也能在实验数据集上保持94%的准确率。 相似文献
4.
基于部分遮挡人脸识别算法的研究 总被引:1,自引:0,他引:1
研究人脸识别问题。针对当人脸采集的图像出现面部关键区域遮挡时,传统算法往往需要依靠面部主要关键特征进行识别,遮挡人脸的大部分特征消失,造成的误识别、漏识别问题。为解决上述问题,提出了基于遮挡人脸图片的识别方法。方法首先对遮挡人脸图像进行小波变换,然后建立特征粗糙集,根据特征加权融合算法将细节特征向量进行有效联系,进而根据联系性进行识别。实验结果表明,方法的能够对遮挡的人脸图像进行有效的识别,提高了身份识别的安全性和准确度。 相似文献
5.
为了提高戴眼镜人脸图像的识别率, 提出了一种从人脸图像中检测并去除眼镜的方法。首先对输入的戴眼镜人脸图像与系统预留的无眼镜人脸图像进行基于人眼位置的标定, 检测出眼镜遮挡区域, 再用无眼镜人脸图像中对应的遮挡区域对戴眼镜人脸图像进行补偿, 从而合成了对应输入图像的不戴眼镜的人脸图像。实验结果表明, 该方法能有效地合成无眼镜人脸图像, 将合成后的人脸图像再应用于人脸识别系统, 识别率显著提高。 相似文献
6.
7.
8.
人脸识别是生物特征识别技术的一个重要方向。虽然目前大部分研究都还只是针对二维人脸图像,但是3D人脸模型包含更丰富的人脸信息,有助于机器对人脸的识别。从二维到三维,人脸识别研究进入了一个新的阶段。从3D人脸数据的获取方式入手,介绍最近提出的一系列3D人脸识别算法,并进行归类。最后提出"有针对性地获取3D人脸模型数据是进行有效识别的基础"这一结论。 相似文献
9.
在热红外人脸识别中,眼镜作为人脸图像中常见的遮挡物,造成了人脸眼睛区域信息的丢失,严重影响了人脸识别效果。针对该问题,提出了一种在热红外图像中去除眼镜的算法,对热红外图像进行眼镜检测,使用无眼镜的热红外图像的平均眼睛模板来代替有眼镜的热红外图像的眼镜区域,再基于核主成分分析算法利用可视化图像和热红外图像融合的方法,进行图像融合,获得较好的无眼镜热红外图像,通过分类识别来实现人脸识别。实验结果表明,在热红外人脸识别中,该方法在戴眼镜的情况下能够提高人脸识别的准确率和取得较好的识别效果。 相似文献
10.
11.
现有人脸纹理重建方法对于人脸的皱纹、胡须、瞳孔颜色等重建效果往往不够细致.为了解决此问题,文中提出基于人脸标准化的纹理和光照保持3D人脸重构.首先对2D人脸图像标准化,使用光照信息和对称纹理重构人脸自遮挡区域的纹理.然后依据2D-3D点对应关系从标准化的2D人脸图像获取相应的3D人脸纹理,结合人脸形状重构和纹理信息,得到最终的3D人脸重构结果.实验表明文中方法有效保留原始2D图像的纹理和光照信息,重构的人脸更自然,具有更丰富的人脸细节. 相似文献
12.
一种人脸标准光照图像的线性重构方法 总被引:2,自引:0,他引:2
基于相同光照下不同人脸图像与其标准光照图像之间的稳定关系,文中提出一种人脸标准光照图像重构方法。首先,为消除人脸结构影响,引入人脸三维变形,实现图像像素级对齐。其次,根据图像明暗变化,给出一种基于图像分块的光照分类方法。最后,对于形状对齐后的不同光照类别样本,训练出基于子空间的线性重构模型。该方法有效避免传统预处理方法带来的重构图像纹理丢失和子空间方法引起的图像失真。Extended Yale B数据库上实验表明,该方法对图像真实度与人脸识别率的提升,也验证文中人脸对齐和光照分类方法的有效性。 相似文献
13.
提出一种局部描述符进行三维人脸识别。每个采样点的局部特征定义为该点根据其法向量与3个主轴之间的角度自适应选取的邻域点集向人脸主轴平面投影所得的面积。文中提出的三维人脸识别算法首先对人脸进行预处理,归一化到较统一的姿态后,提取与鼻尖等距的轮廓线,并对轮廓线进行重采样以剔除无用点。然后对每个采样点提取局部特征。最后建立人脸之间的点对应关系,将加权融合后的局部特征用于识别。通过实验认证,文中方法识别效果较好,且对遮挡和噪声有较好的鲁棒性。 相似文献
14.
提出一种改进的三维人脸重构方法。该方法采用基于单个相机的双目立体视觉系统对人脸进行采样,根据人脸对称性假设,运用补洞与纠错技术进行自动点云优化。继而采用简化的Candide-3模型作为细分初始控制网格,局部加细地进行细分曲面分层次拟合操作,采用测地线映射技术对不同表情进行归一化,并分别建立人脸数据库。实验结果表明,采用单相机立体视觉系统在提高重建精度的同时,很大程度上避免由于双相机拍摄不同步引起的重建鲁棒性降低问题。而采用细分曲面作为存储结构,在节约空间的前提下,为分层次比对筛选提供理论支持。该系统成本较低,适合在许多领域推广应用。 相似文献
15.
16.
17.
18.
基于拉普拉斯微分算子提出了一种用于三维人脸样本的表情识别方法。首先使用曲面变形的方法对三维人脸样本进行样本配准处理。然后基于拉普拉斯微分算子计算三维人脸的表情特征,并根据训练样本的特征向量集构建一个关于三维人脸表情的字典。最后使用稀疏表示方法对三维人脸表情进行识别分析。实验结果表明,该方法能够有效地提高三维人脸表情识别的准确率。 相似文献
19.
PCA类内平均脸法在人脸识别中的应用研究 总被引:12,自引:2,他引:12
人脸识别是生物特征识别技术中一个非常活跃的课题,取得了很多研究成果。统计主元分析法(Principal Components Analysis, PCA)是人脸特征提取和识别的常用方法之一。结合传统PCA算法的特点,提出了一种用类内平均脸对类内样本进行规范化的方法。该方法有效地增加了类间样本的识别距离、有效地缩小了类内样本的识别距离,从而提高了人脸正确识别率。基于ORL人脸数据库的实验结果表明,该方法正确识别率达到98%,在人脸识别的实际应用中是一种可行的方法。 相似文献