首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a TCR transgenic mouse bred onto a recombinase-activating gene-2-deficient background, we have examined the influence of B7.1 and B7.2 on activation of naive, CD8+ T cells in vitro. We found that B7.1 was a more potent costimulus than B7.2 for induction of proliferation and IL-2 production by naive CD8+ T cells. This difference appeared to be quantitative in nature, as determined using transfectants expressing various defined levels of B7.1 or B7.2, or using purified B7.1 or B7.2 fusion proteins. In contrast to the quantitative differences seen in stimulation of naive T cells, B7.1 and B7.2 were comparable in their ability to costimulate responses in T cells previously primed in vitro. In addition, primed, but not naive, T cells were capable of proliferating and producing IL-2 in response to a TCR stimulus alone, apparently in the absence of B7 costimulation. Lastly, we found that B7.1 and B7.2 were equivalently capable of driving differentiation of naive CD8+ T cells into an IL-4-producing phenotype when exogenous IL-4 was added to the primary culture or to an IFN-gamma-producing phenotype in the presence of IL-12. These results indicate that signals generated by B7.1 and B7.2 are qualitatively similar, but that B7.1 is quantitatively stronger than B7.2. Further, our results indicate that the activation state of the responding T cell may influence the efficiency with which the T cell can respond to a costimulatory signal provided by either B7.1 or B7.2.  相似文献   

2.
APCs provide costimulatory and down-regulatory signals to Ag-activated T cells through interactions between B7.1 and B7.2 on APCs with either CD28 or CTL Ag-4 expressed on T cells. Recipients of mouse thyroglobulin (MTg)-primed spleen cells activated in the presence of anti-B7.2 had decreased experimental autoimmune thyroiditis (EAT) severity compared with recipients of cells cultured with control rat Ig or anti-B7.1. Blocking B7.2 during in vivo priming also suppressed the ability of MTg-primed spleen cells to transfer EAT, implicating a role for B7.2 for priming and in vitro activation of EAT effector cells. In contrast, administration of anti-B7.2 or anti-B7.2 Fab to recipients of MTg-activated spleen cells increased the severity of EAT compared with recipients receiving control Ig. Thyroids from anti-B7.2-treated recipients had increased expression of IL-4 mRNA compared with thyroids from rat Ig-treated controls. Both B7.1 and B7.2 molecules were expressed in the thyroids of mice with EAT, although B7.2 was more prevalent than B7.1. Administration of both anti-B7.1 and anti-B7.2 to recipient mice suppressed the development of EAT, while anti-B7.1 treatment alone had no effect on EAT severity. The suppression of EAT was not observed when anti-B7.1 and anti-B7.2 treatment was delayed until 7 days after cell transfer, suggesting a requirement for B7 in the initiation of EAT in recipient mice. These results suggest that costimulation is required during the effector phase of EAT and that B7.2 may have opposing roles in the activation versus effector stages of autoreactive T cells.  相似文献   

3.
The differentiation of CD4+ T cells into a Th1 vs Th2 phenotype profoundly influences the outcome of autoimmune and infectious diseases. B7 costimulation has been shown to affect the production of both Th1 and Th2 cytokines, depending on the system studied. There is, consequently, great interest in manipulating the B7 costimulatory signal for therapeutic purposes. To optimally manipulate this key immunoregulatory pathway, the contribution of B7 costimulation to cytokine production requires further clarification. We have compared the B7 requirement for cytokine production by naive vs previously activated T cells using DO11.10 TCR transgenic CD4+ T cells and splenic APCs from mice lacking B7 expression. Our data indicate that induction of IL-4 production and Th2 differentiation by naive T cells is highly dependent on B7 molecules, whereas IL-4 production by previously activated T cells is B7 independent. The predominant contribution of B7-mediated signals to Th1 cytokine production by both naive and primed T cells is upon IL-2 production (and expansion) rather than IFN-gamma (effector cytokine) production. Thus, our studies demonstrate that the antigenic experience of a T cell at the time of B7 blockade may determine whether blockade predominantly affects T cell expansion, differentiation, or effector cytokine production. These differential effects of B7 costimulation on IL-2 vs IFN-gamma production and on IL-4 production by naive vs primed T cells have important implications for understanding how B7:CD28/CTLA4 blockade can be effectively used to manipulate cytokine production in vivo.  相似文献   

4.
Tolerance is thought to occur when Ag is presented to T cells in the absence of costimulatory interactions from APC accessory molecules. Of the professional APC, the resting B cell may be the main tolerizing cell in vivo. We have analyzed several aspects of activation of naive transgenic CD4 cells stimulated with resting or activated B cells presenting peptide Ag. Similar results were obtained with stimulation from peptide presenting fibroblast APC lacking or expressing B7-1 with intracellular adhesion molecule-1. TCR ligation with little or no accessory molecule coreceptor engagement induced efficient blastogenesis; up-regulation of CD25, CD44, CD69, CD95 and CD71; and down-regulation of CD62L over a 48-h period. Accessory molecule help enhanced the expression of CD25, CD44, CD69, and CD71, but to very modest degrees. Only two molecules, CD40 ligand and IL-2, were found to be extremely dependent on accessory molecule help, with little or no expression evident with peptide presented on resting B cells or class II-positive fibroblasts. T cells induced on resting B cells expanded minimally over 3 days, and this was followed by extensive cell death and hyporesponsiveness of the resulting cells. These studies suggest that under tolerizing conditions, such as Ag presentation by resting B cells, much of the naive CD4 response is induced efficiently. Partial activation, however, may be the overall result due to the lack of CD40 ligand expression, which may regulate costimulatory activity in APC and, in turn, may contribute to limiting the production of IL-2 required for T cell expansion and survival.  相似文献   

5.
Cholera toxin (CT) is a potent mucosal immunogen and adjuvant that can strongly prime mucosal T cells. The present study was undertaken to investigate the effects of CT on the expression and functional activity of the costimulatory molecules B7.1 and B7.2 on macrophages and the relationship of these effects to the mucosal adjuvanticity of CT. Bone marrow macrophages (BMM) were generated by culturing bone marrow with macrophage CSF or granulocyte-macrophage CSF. After treatment with either CT alone or IFN-gamma alone, B7.2 expression on BMM was moderately up-regulated and was further increased when BMM were treated with both CT and IFN-gamma together. Interestingly, CT had no effect on B7.1 expression despite the close relationship between these two molecules. Up-regulation of B7.2 expression by CT was mediated by intracellular cAMP production, in that CT-B subunit had no effect and dibutyryl cAMP could mimic the effect. CT increased functional costimulatory activity of macrophages for both anti-CD3-stimulated and allostimulated T cells, an increase that was blocked by anti-B7.2, but not anti-B7.1, Ab. B7.2 expression by Mac1+ Peyer's patch cells was increased after intraluminal exposure to CT in vivo. Treatment of mice with anti-B7.2 Ab in vivo inhibited both the mucosal adjuvanticity and the immunogenicity of CT. We conclude that CT enhances the costimulatory activity of mucosal APC by differentially up-regulating B7.2 expression, an effect that appears to be important for its mucosal adjuvanticity and immunogenicity.  相似文献   

6.
CD28 is a major coreceptor that regulates cell proliferation, anergy, and viability of T cells. The negative selection by T-cell receptor (TCR)-induced cell death of immature thymocytes as well as of activated human antigen-specific T-cell clone, requires a costimulatory signal that can be provided by CD28. Conversely, CD28-mediated signals increase expression of Bcl-XL, a survival gene, and promote survival of naive T cells cultured in the absence of antigen or costimulation. Because CD28 appears to both protect from, or induce T-cell death, one important question is to define the activation and cellular parameters that dictate the differential role of CD28 in T-cell apoptosis. Here, we compared different CD28 ligands for their ability to regulate TCR-induced cell death of a murine T-cell hybridoma. In these cells, TCR triggering induced expression of Fas and FasL, and cell death was prevented by anti-Fas blocking monoclonal antibody (MoAb). When provided as a costimulus, both CD28 MoAb and the B7.1 and B7.2 counter receptors downregulated, yet did not completely abolish T-cell receptor-induced apoptosis. This CD28 cosignal resulted in both upregulation of Bcl-XL and prevention of FasL expression. In marked contrast, when given as a single signal, CD28 MoAb or B7.1 and B7.2 induced FasL expression and resulted in T-cell death by apoptosis, which was dependent on the level of CD28 ligation. Furthermore, triggering of CD28 upregulated FasL and induced a marked T-cell death of previously activated normal peripheral T cells. Our results identify Fas and FasL as crucial targets of CD28 in T-cell death regulation and show that within the same cell population, depending on its engagement as a single signal or as a costimulus together with the TCR, CD28 can either induce a dose-dependent death signal or protect from cell death, respectively. These data provide important insights into the role of CD28 in T-cell homeostasis and its possible implication in neoplastic disorders.  相似文献   

7.
The recruitment of eosinophils into the airways after allergen exposure is dependent on interleukin (IL) 5 secreted from antigen-specific CD4+ T cells of the T helper cell (Th) 2 subset. However, while it is established that costimulation through CD28 is required for TCR-mediated activation and IL-2 production, the importance of this mechanism for the induction of a Th2 immune response is less clear. In the present study, we administered the fusion protein CTLA-4 immunoglobulin (Ig) into the lungs before allergen provocation to determine whether CD28/CTLA-4 ligands are required for allergen-induced eosinophil accumulation and the production of Th2 cytokines. Administration of CTLA-4 Ig inhibited the recruitment of eosinophils into the lungs by 75% and suppressed IgE in the bronchoalveolar lavage fluid. CTLA-4 Ig also inhibited the production of IL-4, IL-5, and IL-10 by 70-80% and enhanced interferon-gamma production from CD3-T cell receptor-activated lung Thy1.2+ cells. Allergen exposure upregulated expression of B7-2, but not B7-1, on B cells from the lung within 24 h. Moreover, airway administration of an anti-B7-2 monoclonal antibody (mAb) inhibited eosinophil infiltration, IgE production, and Th2 cytokine secretion comparable in magnitude to that observed with CTLA-4 Ig. Treatment with an anti-B7-1 mAb had a small, but significant effect on eosinophil accumulation, although was less effective in inhibiting Th2 cytokine production. The anti-B7-2, but not anti-B7-1, mAb also inhibited antigen-induced airway hyperresponsiveness in vivo. In all of the parameters assessed, the combination of both the anti-B7-1 and anti-B7-2 mAb was no more effective than anti-B7-2 mAb treatment alone. We propose that strategies aimed at inhibition of CD28 interactions with B7-2 molecules may represent a novel therapeutic target for the treatment of lung mucosal allergic inflammation.  相似文献   

8.
Recent experiments defining T cell agonists, partial agonists and antagonists have suggested that the T cell can discriminate between subtle differences in interactions leading to T cell activation. To further understand the complexities of T cell activation, we have analyzed the requirements for the induction of a variety of effector functions using naive T cells and a variety of altered peptide ligands. Using a strong agonist peptide, massive T cell receptor (TCR) down-regulation correlated with a wide range of effector functions that were all induced above the same threshold peptide concentration. Interestingly, the kinetics of TCR down-regulation correlated with the concentration of the peptide, whereas the maximal degree of TCR down-regulation correlated with the induction of all monitored effector functions. A selected group of altered peptide ligands was also examined that were able to render target cells susceptible for lysis by effector cytotoxic T lymphocytes. The extent of TCR down-regulation induced by these peptides corresponded to the induction of a subset of effector functions. These studies have shown that the extent of TCR down-regulation defines the strength of TCR-mediated "signal 1" which correlates with the spectrum of effector functions activated within the T cell. Thus, activation of different T cell functions requires the triggering of distinct numbers of TCR. The different parameters that influence TCR down-regulation define important distinctions between our results and previously reported findings with T cell clones and may outline decisive parameters for the consequences of T cell activation in vivo.  相似文献   

9.
To futher our understanding of the mechanisms underlying the diverse effects of altered peptide ligands (APL) on T cell activation, we used a population of nonactivated spleen cells from mice that expressed a transgenic TCR specific for myelin basic protein Ac1-11 and peptide analogues that display either enhanced or decreased affinities for TCR/MHC to address the question whether APL-induced signaling through the TCR can regulate the capability of APC to activate T cells. We demonstrate that weak agonists APL are poor inducers of all aspects of the activation of both the responder T cells and the APC. Enhancement of the antigenic signal by augmenting the binding of the weak agonists to MHC reversed their defective activating capacity. Enhancement of costimulation by engagement of CD28 only resulted in augmentation of the capacity of the weak agonist APL to induce proliferation and IL-2/IL-3 production, but not CD40L or IL-12Rbeta2 chain expression on T cells, CD80/CD86 expression on APC, IL-12 secretion, or IFN-gamma production. Exogenous IL-12 promoted IFN-gamma production in the presence of the weak agonists. These studies demonstrate that there is a critical threshold of antigenic signal required for full activation of the T cell-APC interactions needed for the differentiation of Th1 cells. The provision of excess costimulation can overcome some of the defects in T cell activation by weak agonists, but is insufficient to induce a sufficient level of CD40L expression needed for engagement of CD40 on APC with subsequent IL-12 production and induction of IL-12Rbeta2 chain expression.  相似文献   

10.
Although there is good evidence that the induction of IL-4 synthesis in CD4+ T lymphocytes is favored by Ag presentation by B cells and not macrophages, the precise molecular signals provided by B cells to T cells that enhance IL-4 synthesis are not clear. To examine this issue, we established an APC-independent system to activate highly purified T cells and induce cytokine synthesis, using immobilized mAbs against several T cell surface molecules, including CD3, CD28, and the CD40 ligand (CD40L). The counter-receptors for all three of these molecules are expressed on B cells, and include CD40, which is expressed primarily on B cells, but also on dendritic cells and thymic epithelium. We found that IL-4 synthesis was greatly enhanced by triggering of CD40L on the T cell surface in conjunction with ligation of CD3/TCR and CD28, whereas ligation of CD3/TCR and CD28 in the absence of CD40L triggering resulted in little or no IL-4 synthesis. CD40L costimulation greatly enhanced IL-4 synthesis both in T cells from normal nonallergic adult subjects as well as in naive T cells from cord blood. Furthermore, we demonstrated that IL-4 synthesis was optimally enhanced when the strength of the CD3/TCR signal was limiting, while IL-4 synthesis was inhibited when CD3/TCR stimulation was maximal. These studies confirm that IL-4 synthesis can be induced in normal T lymphocytes in the absence of exogenous IL-4, and demonstrate that CD40L costimulation is of fundamental importance in regulation of IL-4 production. In addition, these findings provide a mechanism by which B cells preferentially enhance IL-4 synthesis in T cells at low Ag concentrations.  相似文献   

11.
TGF-beta has been shown to play a central role in regulating inflammatory responses; thus, understanding the factors involved in the generation of TGF-beta-producing cells could lead to interventions that are useful in effecting disease progression. In initial studies, the capacity of naive CD4+ T cells from TCR transgenic (Tg) mice to produce TGF-beta following primary and secondary stimulation was assessed. TGF-beta, IL-4, or IFN-gamma production could not be detected from highly purified naive CD4+/lymphocyte endothelial cell adhesion molecule (LECAM)-1high cells following primary stimulation for 36 h with plate-bound anti-CD3, anti-CD28, and IL-2. This population was subsequently used to study the differentiation of TGF-beta-producing CD4+ T cells. In further studies, naive CD4+/LECAM-1high cells from TCR transgenic mice of both the BALB/c and B10.A backgrounds were stimulated with T-depleted spleen cells (TDS) and specific peptide in the presence of various cytokines and/or cytokine antagonists for 5 days, restimulated, and TGF-beta, IL-4, and IFN-gamma production were measured. Priming conditions favoring high IL-4 production and/or low IFN-gamma production greatly enhanced TGF-beta production in secondary cultures. Furthermore, the presence of IL-10 in cultures was associated with an increase in TGF-beta production following restimulation. The importance of IL-4 and IFN-gamma in regulating TGF-beta production was confirmed in studies showing that cells from IFN-gamma(-/-) mice produced more TGF-beta, while cells from IL-4(-/-) mice produced less TGF-beta compared with wild-type controls. Finally, the addition of exogenous TGF-beta to priming cultures significantly enhanced the production of TGF-beta upon restimulation, demonstrating that TGF-beta has a role in self-regulating its own production.  相似文献   

12.
The aim of this study was to test whether the nature of the antigen-presenting cell (APC) can influence the Th1/Th2 balance in vivo. Our data show that dendritic cells (DC), pulsed extracorporeally with antigen, induced the development of cells secreting IL-2, IFN-gamma and IL-4 upon antigen rechallenge in vitro. Priming with peritoneal macrophages sensitized cells that produced IL-4 but not IFN-gamma. To identify the factors involved in T helper development, mice were primed with APC with or without treatment with neutralizing antibodies to costimulatory molecules or cytokines. Our results indicate that priming with DC or macrophages is strictly dependent on the CD28-CTLA4/B7 interaction. Of note, CD86 provides the initial signal to induce naive T cells to become IL-4 producers, whereas CD80 is a more neutral differentiation signal. IL-12, released by the DC, appears as a potent and obligatory inducer of differentiation for IFN-gamma-producing cells. IL-6, although produced by both APC populations, is necessary to direct activation of the Th2-type response by macrophages but not by DC.  相似文献   

13.
The molecules B7.1 and B7.2 deliver costimulatory signals of critical importance to naive T cells, and may thus be involved in abrogation of oral tolerance in IBD. Functional disparity apparently exists among antigen-presenting cells in vivo. We wanted to examine if differential B7 expression occurs on mucosal macrophage subsets. Cryosections of bowel specimens from patients with IBD and normal controls were subjected to immunofluorescence and immunoperoxidase staining. In normal mucosa, selective subepithelial accumulation of B7.2+ cells was found. In inflamed IBD mucosa, however, subsets appeared consisting of both B7.2(hi) and B7.1(hi) cells as well as CD14(hi) macrophages. Notably, outside lymphoid aggregates the prominent fraction of recently recruited CD14(hi) macrophages comprised most (approximately 80%) of the B7.1(hi) cells, whereas most (approximately 70%) B7.2(hi) cells were identified as resident mucosal macrophages (CD14(lo) or CD14-). Differential expression of B7.1 and B7.2 on two functionally different subsets of intestinal macrophages implies separate immunoregulatory roles for the two molecules. This finding is in keeping with recent experimental data demonstrating that monocyte-derived cells are crucial for immune responses at mucosal surfaces. Preferential B7.1 up-regulation might be critical in breaking the immunological tolerance to luminal antigens in IBD, but it cannot be excluded that it is a secondary pathogenic event.  相似文献   

14.
15.
16.
Anti-CD4 mAb-induced tolerance to transplanted tissues has been proposed as due to down-regulation of Thl cells by preferential induction of Th2 cytokines, especially IL-4. This study examined the role of CD4+ cells and cytokines in tolerance to fully allogeneic PVG strain heterotopic cardiac allografts induced in naive DA rats by treatment with MRC Ox38, a nondepleting anti-CD4 mAb. All grafts survived >100 days but had a minor mononuclear cell infiltrate that increased mRNA for the Thl cytokines IL-2, IFN-gamma, and TNF-beta, but not for Th2 cytokines IL-4 and IL-6 or the cytolytic molecules perforin and granzyme A. These hosts accepted PVG skin grafts but rejected third-party grafts, which were not blocked by anti-IL-4 mAb. Cells from these tolerant hosts proliferated in MLC and produced IL-2, IFN-gamma, and IL-4 at levels equivalent to naive cells. Unfractionated and CD4+ T cells, but not CD8+ T cells, transferred specific tolerance to irradiated heart grafted hosts and inhibited reconstitution of rejection by cotransferred naive cells. This transfer of tolerance was associated with normal induction of IL-2 and delayed induction of IFN-gamma, but not with increased IL-4 or IL-10 mRNA. Transfer of tolerance was also not inhibited by anti-IL-4 mAb. This study demonstrated that tolerance induced by a nondepleting anti-CD4 mAb is maintained by a CD4+ suppressor T cell that is not associated with preferential induction of Th2 cytokines or the need for IL-4; nor is it associated with an inability to induce Th1 cytokines or anergy.  相似文献   

17.
Previous studies on human Th subset development were restricted to the analysis of naive T cells activated with anti-CD3 mAb in the absence of physiologic APC. In this study, we have analyzed the role of cytokines and physiologic APC on T cell maturation in an Ag-specific system, in which naive neonatal CD4 T cells were primed with allogeneic dendritic cells (DC). We found that the cytokine profile of primed cells was dependent upon 1) the ratio between T cells and allogeneic DC and 2) the endogenous production of IL-4 and IL-12. Neutralization of IL-4 during primary MLR increased IFN-gamma production at priming and shifted the phenotype of primed cells from Th0 to Th1. These effects were IL-12 dependent, in that they were suppressed by anti-IL-12 Abs. The production of IL-12 in primary MLR was further evidenced by the presence of IL-12 p40 in the culture supernatant fluids. IL-12 production was suppressed by exogenous IL-4 and increased by anti-IL-4 blocking mAbs, indicating that endogenous IL-4 down-regulated IL-12 production by DC. Finally, IL-12 was produced as a result of T cell/DC interaction involving the CD40/CD40 ligand and CD28/B7 costimulation pathways, as revealed by the inhibitory effect of anti-CD40 ligand mAb and CTLA-4Ig. These observations suggest that in neutral conditions, Ag presentation by DC results in the coordinate production of naive T cell-derived IL-4 and DC-derived IL-12 that in concert shape the cytokine profile of Th cells.  相似文献   

18.
Mice rendered deficient for interleukin (IL) 6 by gene targeting were evaluated for their response to T cell-dependent antigens. Antigen-specific immunoglobulin (Ig)M levels were unaffected whereas all IgG isotypes showed varying degrees of alteration. Germinal center reactions occurred but remained physically smaller in comparison to those in the wild-type mice. This concurred with the observations that molecules involved in initial signaling events leading to germinal center formation were not altered (e.g., B7.2, CD40 and tumor necrosis factor R1). T cell priming was not impaired nor was a gross imbalance of T helper cell (Th) 1 versus Th2 cytokines observed. However, B7.1 molecules, absent from wild-type counterparts, were detected on germinal center B cells isolated from the deficient mice suggesting a modification of costimulatory signaling. A second alteration involved impaired de novo synthesis of C3 both in serum and germinal center cells from IL-6-deficient mice. Indeed, C3 provided an essential stimulatory signal for wild-type germinal center cells as both monoclonal antibodies that interrupted C3-CD21 interactions and sheep anti-mouse C3 antibodies caused a significant decrease in antigen-specific antibody production. In addition, germinal center cells isolated from C3-deficient mice produced a similar defect in isotype production. Low density cells with dendritic morphology were the local source of IL-6 and not the germinal center lymphocytes. Adding IL-6 in vitro to IL-6-deficient germinal center cells stimulated cell cycle progression and increased levels of antibody production. These findings reveal that the germinal center produces and uses molecules of the innate immune system, evolutionarily pirating them in order to optimally generate high affinity antibody responses.  相似文献   

19.
Bystander activation, i.e., activation of T cells specific for an antigen X during an immune response against antigen Y may occur during viral infections. However, the low frequency of bystander-activated T cells has rendered it difficult to define the mechanisms and possible in vivo relevance of this nonspecific activation. This study uses transgenic mice expressing a major histocompatibility complex class I-restricted TCR specific for glycoprotein peptide 33-41 of lymphocytic choriomeningitis virus (LCMV) to overcome this limitation. CD8+ T cells from specific pathogen-free maintained, unimmunized "naive" TCR transgenic mice can differentiate into LCMV-specific cytolytic effector CTL during infections with vaccinia virus or Listeria monocytogenes in vivo or mixed lymphocyte culture in vitro. We show that in these model situations (a) nonspecifically activated CTL are able to confer antiviral protection in vivo, (b) bystander activation is largely independent of the expression of a second T cell receptor of different specificity, (c) bystander activation is not mediated by a broadly cross-reactive TCR, but rather by cytokines, (d) bystander activation can be mediated by cytokines such as IL-2, but not alpha/beta-IFN in vitro; (e) bystander activation is, overall, a rare event, occuring in vivo in roughly 1 in 200 of the LCMV-specific CTL during infection of TCR transgenic mice with vaccinia virus; (f) bystander activation does not have a significant functional impact on nontransgenic CTL memory under the conditions tested; and (g) even in the TCR transgenic situation, where unphysiologically high numbers of T cells of a single specificity are present, bystander activation is not sufficient to cause clinically manifest autoimmune disease in a transgenic mouse model of diabetes. We conclude that although bystander activation via cytokines may generate cytolytically active CTL from naive precursors, quantitative considerations suggest that this is usually not of major biological consequence.  相似文献   

20.
In this work, we addressed the possibility to enhance the "in vitro" generation of CTLs recognizing tumor-associated antigens (TAAs) by using an inactivated recombinant vaccinia virus encoding B7.1 and B7.2 costimulatory molecules (rVV-B7.1/2). Antigen presenting cells (APCs) infected by rVV-B7.1/2 and pulsed with MART-1/Melan-A27-35 HLA-A2.1-restricted peptide induced significantly higher specific cytotoxic activity than peptide-loaded APCs infected by wild-type VV, both in VV-sensitized and naive donors. When APCs were infected with a rVV encoding both MART-1/Melan-A27-35 and B7-1/2 (rVV-B7.1/2-M), a significantly more effective CTL generation was observed as compared with cultures stimulated by APCs infected with a rVV encoding the TAA epitope only (rVV-M). These enhancing effects were detectable irrespective of a previous VV-specific sensitization. Most importantly, fibroblasts, devoid of antigen-presenting capacity upon peptide pulsing or infection with rVV-M, could be turned into effective APCs after infection by rVV encoding TAA epitopes and costimulatory molecules. In these experiments, by using separate recombinant viral constructs, we observed a predominant role of B7-1 as compared with B7-2 in the induction of TAA-specific CTLs. Taken together, our data indicate that replication-incompetent rVV encoding TAA epitopes and costimulatory molecules are able to induce highly effective generation of tumor-specific CTLs. Therefore, these vectors could represent valuable clinical tools for immunotherapy of melanoma patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号