首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Serine and threonine phosphorylation has been shown to down-regulate insulin signaling at multiple steps, including the receptor and downstream molecules such as insulin receptor substrate-1 (IRS-1). To further address the mechanism of this regulation at the level of IRS-1, we constructed a double serine mutant of IRS-1: S662A/S731A-IRS-1. The serines 662 and 731 mutated to alanine are surrounding tyrosines Y658 and Y727, respectively. These tyrosines are comprised in YXXM motifs, which are potential binding sites for the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase. In a first series of experiments using the yeast two-hybrid system, we show that IRS-1 interacts with p85alpha, and this interaction depends on tyrosine phosphorylation, as shown with the IRS-1 mutant F18 and 3Y-IRS-1. F18-IRS-1 contains 18 potential tyrosine phosphorylation sites mutated to phenylalanine; three of them, i.e. Y608, 628, and 658, which are potential binding sites for p85alpha, have been added back in the 3Y-IRS-1 mutant. The tyrosine phosphorylation of IRS-1, which is required for the interaction with p85alpha, is thought to occur via endogenous yeast kinases that phosphorylate IRS-1 at least on these PI 3-kinase-binding sites. Next, we show that not only p85alpha but also p55PIK, another regulatory subunit of PI 3-kinase, interacts with IRS-1 in yeast. Interestingly, for both regulatory subunits their interaction with IRS-1 is up-regulated by mutating serines 662 and 731 on IRS-1. In a previous study we found that insulin-stimulated PI 3-kinase activity was increased not only in the presence of S662A/S731A-IRS-1 but also under resting conditions compared with the activity seen with WT-IRS-1. Here we demonstrate in 293-EBNA cells overexpressing S662A/S731A-IRS-1 that insulin-stimulated protein kinase B activity is not augmented, whereas without insulin treatment, basal activity is increased compared with that in cells overexpressing wild-type IRS-1. In conclusion, we have shown that 1) potential serine phosphorylation sites on IRS-1, which are adjacent to YXXM binding motifs for PI 3-kinase, negatively regulate binding of IRS-1 to PI 3-kinase regulatory subunits; and 2) these modulations affect protein kinase B activity.  相似文献   

2.
The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an "unregulated" mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance.  相似文献   

3.
Prior studies have demonstrated that a juxtamembrane tyrosine (tyrosine 972) in the insulin receptor is required for the receptor to elicit various biological responses and to stimulate the tyrosine phosphorylation of two endogenous substrates, the insulin receptor substrate-1 and the adaptor protein called Shc. In the present studies the role of this tyrosine was examined in the insulin-stimulated tyrosine phosphorylation of a group of 60-kDa endogenous proteins. These include a 60-kDa protein which, when phosphorylated, becomes associated with the GTPase activating protein of Ras, a distinct 60-kDa protein that associates with either the phosphatidylinositol 3-kinase or the tyrosine phosphatase Syp, as well as a 58/53-kDa protein that is tyrosine phosphorylated in response to insulin but has no known associated protein. In each case, a mutant insulin receptor in which tyrosine 972 has been changed to phenylalanine was found to be defective in its ability to phosphorylate these three endogenous substrates, although the mutant receptor exhibited the same level of insulin-stimulated autophosphorylation as the wild type receptor. These results further demonstrate the critical role that the juxtamembrane tyrosine 972 plays in downstream signaling by the insulin receptor.  相似文献   

4.
A new site of serine phosphorylation (Ser-1035/1037) has been identified in the kinase domain of the insulin receptor. Mutant receptors missing these two serines were expressed in Chinese hamster ovary cells overexpressing protein kinase C alpha. These mutant receptors lacked a phorbol ester-stimulated phosphoserine containing tryptic peptide as demonstrated by both high percentage polyacrylamide/urea gel electrophoresis and two-dimensional tlc. Moreover, a synthetic peptide with the sequence of this tryptic peptide was phosphorylated by isolated protein kinase C alpha and co-migrated with the phosphopeptide from in vivo labeled receptor. These results indicate that serine-1035 and/or 1037 in the kinase domain of the insulin receptor are phosphorylated in response to activation of protein kinase C alpha.  相似文献   

5.
A mutant insulin receptor lacking the final 69 amino acids of the beta-subunit (delta 69) was used to examine the role of the receptor C-terminal domain in kinase activation. With increasing deletion of the C-terminus from 43 to 69 amino acids we show that exogenous peptide kinase activity is lost before autokinase activity. Despite this, phosphorylation of an in vivo insulin receptor substrate, IRS-1, and insulin bioeffects are similar to wild-type. In addition, with the exception of insulin-stimulated peptide phosphorylation, the reductant glutathione modified kinase activity in a similar manner for both wild-type and mutant delta 69 receptors. These results suggest that conformational changes proposed to occur within the receptor C-terminus upon insulin binding may not be necessary for kinase activation under a variety of conditions.  相似文献   

6.
The cytoplasmic juxtamembrane domain of the human insulin receptor (hIR) contains a single copy of the tetrameric amino acid sequence Asn-Pro-Glu-Tyr (NPEY) (residues 969-972 in the exon 11-containing B-isoform), which exists in the context of NPXY. In this study, we examined the role of NPEY972 in mediating insulin signal transduction and cellular biological effects. Transfected Chinese hamster ovary cell lines expressing either the wild-type hIR-B isoform (hIR.WT) or a mutant receptor lacking the NPEY972 sequence (hIRDeltaNPEY) and control Chinese hamster ovary.Neo cells were used to comparatively analyze the following insulin effects: in vivo receptor tyrosine autophosphorylation and kinase activity, signal transduction to downstream signaling molecules, and stimulation of glycogen and DNA synthesis. The results showed that in comparison to hIR.WT, the hIRDeltaNPEY mutant demonstrated the following: (a) normal insulin-mediated receptor tyrosine phosphorylation, but approximately 50% reduction in phosphorylation of p185-(insulin receptor substrate-1) and binding of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase), (b) an enhanced stimulation of PI 3-kinase enzymatic activity, (c) a complete inability to phosphorylate Shc, (d) minimal impairment of insulin sensitivity for glycogen synthesis, and (e) an augmented response to insulin-stimulated DNA synthesis via a high capacity, low sensitivity pathway. These results demonstrate the following: 1) the NPEY972 sequence is important but not absolutely essential for coupling of hIR kinase to insulin receptor substrate-1 and p85 or for mediating insulin's metabolic and mitogenic effects, 2) the NPEY972 sequence is necessary for Shc phosphorylation, and 3) the absence of Shc phosphorylation releases the constraints on maximal insulin-stimulated mitogenic response, thus indicating that alternate signaling pathway(s) exist for this insulin action. This alternate pathway appears to be associated with enhanced activation of PI 3-kinase and is of high capacity and low sensitivity.  相似文献   

7.
We examined the role of 185-kDa insulin receptor substrate-1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase) in the signaling pathway of insulin-stimulated GLUT4 translocation. We had already developed a novel cell line to detect GLUT4 on the cell surface, directly and sensitively (Kanai, F., Nishioka, Y., Hayashi, H., Kamohara, S., Todaka, M., and Ebina, Y. (1993) J. Biol. Chem. 268, 14523-14526). We stably expressed a mutant insulin receptor in which Tyr972 was replaced with phenylalanine. Insulin-stimulated tyrosyl phosphorylation of IRS-1 and GLUT4 translocation were decreased in cells expressing the mutant receptor, as compared to findings in cells expressing the normal receptor. Wortmannin, an inhibitor of PI3-kinase, inhibits the insulin-stimulated PI3-kinase activity and GLUT4 translocation at 50 nM, but not the NaF-stimulated GLUT4 translocation. These results suggest that the tyrosine phosphorylation of IRS-1 and activation of PI3-kinase may be involved in the signaling pathway of the insulin-stimulated GLUT4 translocation.  相似文献   

8.
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.  相似文献   

9.
Tumor necrosis factor (TNF)-alpha plays a central role in the state of insulin resistance associated with obesity. It has previously been shown that one important mechanism by which TNF-alpha interferes with insulin signaling is through the serine phosphorylation of insulin receptor substrate-1 (IRS-1), which can then function as an inhibitor of the tyrosine kinase activity of the insulin receptor (IR). However, the receptors and the signaling pathway used by TNF-alpha that mediate the inhibition of IR activity are unknown. We show here that human TNF-alpha, which binds only to the murine p55 TNF receptor (TNFR), is as effective at inhibiting insulin-dependent tyrosine phosphorylation of IR and IRS-1 in adipocytes and myeloid 32D cells as murine TNF-alpha, which binds to both p55 TNFR and p75 TNFR. Likewise, antibodies that are specific agonists for p55 TNFR or p75 TNFR demonstrate that stimulation of p55 TNFR is sufficient to inhibit insulin signaling, though a small effect can also be seen with antibodies to p75 TNFR. Exogenous sphingomyelinase and ceramides, known to be formed by activation of p55 TNFR, inhibit IR and IRS-1 tyrosine phosphorylation and convert IRS-1 into an inhibitor of IR tyrosine kinase in vitro. Myeloid 32D cells expressing IR and IRS-1 are sensitive to this inhibition, but cells expressing IR and IRS-2 are resistant, pointing to an important difference in the biological function between IRS-1 and IRS-2. These data strongly suggest that TNF-alpha inhibits insulin signaling via stimulation of p55 TNFR and sphingomyelinase activity, which results in the production of an inhibitory form of IRS-1.  相似文献   

10.
We have recently shown that leptin mimicks insulin effects on glucose transport and glycogen synthesis through a phosphatidylinositol-3 (PI) kinase dependent pathway in C2C12 myotubes. The aim of the present study was to identify the signalling path from the leptin receptor to the PI-3 kinase. We stimulated C2C12 myotubes with insulin (100 nmol/l, 5 min) or leptin (0.62 nmol/l, 10 min) and determined PI-3 kinase activity in immunoprecipitates with specific non-crossreacting antibodies against insulin-receptor substrate (IRS 1/IRS 2) and against janus kinase (JAK 1 and JAK 2). While insulin-stimulated PI-3 kinase activity is detected in IRS-1 and IRS-2 immunoprecipitates, leptin-stimulated PI-3 kinase activity is found only in IRS-2 immunoprecipitates, suggesting that the leptin signal to PI-3 kinase occurs via IRS-2 and not IRS-1. Leptin-, but not insulin-stimulated PI-3 kinase activity is also detected in immunoprecipitates with antibodies against JAK-2, but not JAK-1. The data suggest that JAK-2 and IRS-2 couple the leptin signalling pathway to the insulin signalling chain. Since we have also detected leptin-stimulated tyrosine phosphorylation of JAK-2 and IRS-2 in C2C12 myotubes it can be assumed that leptin activates JAK-2 which induces tyrosine phosphorylation of IRS-2 leading to activation of PI-3 kinase. As we could not detect the long leptin receptor isoform in C2C12 myotubes we conclude that this signalling pathway is activated by a short leptin receptor isoform.  相似文献   

11.
The insulin receptor substrate-1 (IRS-1) is the major intracellular substrate of insulin and insulin-like growth factor-I (IGF-I) receptor tyrosine kinase activity, and this protein has been found to be overexpressed in human hepatocellular carcinomas. IRS-1 contains several src homology 2 (SH2) binding motifs that interact following tyrosyl phosphorylation with SH2-containing proteins, and this interaction may be essential for transmitting the growth signal from the cell surface to the nucleus. We have previously reported that overexpression of IRS-1 may induce neoplastic transformation of NIH 3T3 cells. This study examines the role of two SH2-containing molecules, namely the Grb2 adapter and Syp tyrosine phosphatase proteins as important components of the cellular transforming activity of IRS-1. Mutations of tyrosine 897 in the YVNI motif (Y897F) and of tyrosine 1180 in the YIDL motif (Y1180F) reduced the intracellular interaction of IRS-1 with Grb2 and Syp proteins, respectively. Furthermore, a single mutation at either Phe-897 or Phe-1180 substantially but not completely reduced IGF-I-dependent transforming activity of IRS-1, whereas creation of a double mutation of both tyrosine residues (Y897F/Y1180F) strikingly attenuated the transforming activity of IRS-1. Stable expression of the IRS-1 mutant constructs in NIH 3T3 cells was associated with a lower level of activation of the mitogen-activated protein kinase kinase (MAPKK)/MAPK cascade following IGF-I stimulation compared with cells stably transfected with the "wild-type" IRS-1 gene. These results suggest that IRS-1-induced cellular transformation requires an interaction with both Grb2 and Syp signal transduction molecules since neither interaction alone appears to be required, and this event subsequently leads to activation of the MAPKK/MAPK cascade.  相似文献   

12.
Transgenic mice which overexpress kinase-deficient human insulin receptors in muscle were used to study the relationship between insulin receptor tyrosine kinase and the in vivo activation of several downstream signaling pathways. Intravenous insulin stimulated insulin receptor tyrosine kinase activity by 7-fold in control muscle versus < or = 1.5-fold in muscle from transgenic mice. Similarly, insulin failed to stimulate tyrosyl phosphorylation of receptor beta-subunits or insulin receptor substrate 1 (IRS-1) in transgenic muscle. Insulin substantially stimulated IRS-1-associated phosphatidylinositol (PI) 3-kinase in control versus absent stimulation in transgenic muscles. In contrast, insulin-like growth factor 1 modestly stimulated PI 3-kinase in both control and transgenic muscle. The effects of insulin to stimulate p42 mitogen-activated protein kinase and c-fos mRNA expression were also markedly impaired in transgenic muscle. Specific immunoprecipitation of human receptors followed by measurement of residual insulin receptors suggested the presence of hybrid mouse-human heterodimers. In contrast, negligible hybrid formation involving insulin-like growth factor 1 receptors was evident. We conclude that (i) transgenic expression of kinase-defective insulin receptors exerts dominant-negative effects at the level of receptor auto-phosphorylation and kinase activation; (ii) insulin receptor tyrosine kinase activity is required for in vivo insulin-stimulated IRS-1 phosphorylation, IRS-1-associated PI 3-kinase activation, phosphorylation of mitogen-activated protein kinase, and c-fos gene induction in skeletal muscle; (iii) hybrid receptor formation is likely to contribute to the in vivo dominant-negative effects of kinase-defective receptor expression.  相似文献   

13.
To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pervanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1-associated phosphatidylinositol (PtdIns) 3-kinase activity. However, insulin receptor-associated PtdIns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor-associated PtdIns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.  相似文献   

14.
The sphingomyelin derivative ceramide is a signaling molecule implicated in numerous physiological events. Recently published reports indicate that ceramide levels are elevated in insulin-responsive tissues of diabetic animals and that agents which trigger ceramide production inhibit insulin signaling. In the present series of studies, the short-chain ceramide analog C2-ceramide inhibited insulin-stimulated glucose transport by approximately 50% in 3T3-L1 adipocytes, with similar reductions in hormone-stimulated translocation of the insulin-responsive glucose transporter (GLUT4) and insulin-responsive aminopeptidase. C2-ceramide also inhibited phosphorylation and activation of Akt, a molecule proposed to mediate multiple insulin-stimulated metabolic events. C2-ceramide, at concentrations which antagonized activation of both glucose uptake and Akt, had no effect on the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) or the amounts of p85 protein and phosphatidylinositol kinase activity that immunoprecipitated with anti-IRS-1 or antiphosphotyrosine antibodies. Moreover, C2-ceramide also inhibited stimulation of Akt by platelet-derived growth factor, an event that is IRS-1 independent. C2-ceramide did not inhibit insulin-stimulated phosphorylation of mitogen-activated protein kinase or pp70 S6-kinase, and it actually stimulated phosphorylation of the latter in the absence of insulin. Various pharmacological agents, including the immunosuppressant rapamycin, the protein synthesis inhibitor cycloheximide, and several protein kinase C inhibitors, were without effect on ceramide's inhibition of Akt. These studies demonstrate ceramide's capacity to inhibit activation of Akt and imply that this is a mechanism of antagonism of insulin-dependent physiological events, such as the peripheral activation of glucose transport and the suppression of apoptosis.  相似文献   

15.
The C860S mutation (IRC860S) in the extracellular domain of the insulin receptor beta-subunit has previously been shown to result in an inhibition of insulin receptor internalization. The present work aims at further dissecting the consequences of this mutation not only on insulin receptor internalization, but also on the signaling of the receptor. Following transfection of Chinese hamster ovary (CHO) cells with insulin receptors with the C860S mutation (CHO-IRC860S) and quantitative electron microscopic analysis of [125I]insulin localization in these cells, the inhibition of receptor internalization appears to be due to an inhibition of the lateral translocation of the receptor from microvilli to nonvillous domains of the cell surface. At 37 C, insulin-stimulated insulin receptor substrate-1 (IRS-1) phosphorylation is inhibited by 50% in CHO-IRC860S, whereas Shc phosphorylation remains unaffected. The inhibition of IRS-1 phosphorylation is still present when experiments are conducted at 4 C, a temperature at which insulin receptor internalization is prevented, suggesting that the defect in IRS-1 phosphorylation is not due to the reduced internalization of the receptor. In terms of biological effects, the mutation has negative consequences on insulin-stimulated c-fos expression and DNA synthesis as well as on glycogen synthase activity. Eventually, the events observed are specific for Cys860, as individual substitution of the two more proximal Cys residues (795 and 872) to Ser is not accompanied by any change in either insulin-induced insulin receptor internalization or IRS-1 phosphorylation. Thus, the present analysis of CHO-IRC860S 1) reveals that insulin receptor surface redistribution is not solely dependent on receptor autophosphorylation, 2) emphasizes that IRS-1 phosphorylation is not dependent on receptor internalization and can be triggered from microvilli, and 3) stresses divergent aspects between two of the major signaling pathways of the insulin receptor.  相似文献   

16.
Growth hormone (GH) and prolactin (PRL) binding to their receptors, which belong to the cytokine receptor superfamily, activate Janus kinase (JAK) 2 tyrosine kinase, thereby leading to their biological actions. We recently showed that GH mainly stimulated tyrosine phosphorylation of epidermal growth factor receptor and its association with Grb2, and concomitantly stimulated mitogen-activated protein kinase activity in liver, a major target tissue. Using specific antibodies, we now show that GH was also able to induce tyrosine phosphorylation of insulin receptor substrate (IRS)-1/IRS-2 in liver. In addition, the major tyrosine-phosphorylated protein in anti-p85 phosphatidylinositol 3-kinase (PI3-kinase) immunoprecipitate from liver of wild-type mice was IRS-1, and IRS-2 in IRS-1 deficient mice, but not epidermal growth factor receptor. These data suggest that tyrosine phosphorylation of IRS-1 may be a major mechanism for GH-induced PI3-kinase activation in physiological target organ of GH, liver. We also show that PRL was able to induce tyrosine phosphorylation of both IRS-1 and IRS-2 in COS cells transiently transfected with PRLR and in CHO-PRLR cells. Moreover, we show that tyrosine phosphorylation of IRS-3 was induced by both GH and PRL in COS cells transiently transfected with IRS-3 and their cognate receptors. By using the JAK2-deficient cell lines or by expressing a dominant negative JAK2 mutant, we show that JAK2 is required for the GH- and PRL-dependent tyrosine phosphorylation of IRS-1, -2, and -3. Finally, a specific PI3-kinase inhibitor, wortmannin, completely blocked the anti-lipolytic effect of GH in 3T3 L1 adipocytes. Taken together, the role of IRS-1, -2, and -3 in GH and PRL signalings appears to be phosphorylated by JAK2, thereby providing docking sites for p85 PI3-kinase and activating PI3-kinase and its downstream biological effects.  相似文献   

17.
18.
19.
Insulin resistance is an important metabolic abnormality often associated with infections, cancer, obesity, and especially non-insulin-dependent diabetes mellitus (NIDDM). We have previously demonstrated that tumor necrosis factor-alpha produced by adipose tissue is a key mediator of insulin resistance in animal models of obesity-diabetes. However, the mechanism by which TNF-alpha interferes with insulin action is not known. Since a defective insulin receptor (IR) tyrosine kinase activity has been observed in obesity and NIDDM, we measured the IR tyrosine kinase activity in the Zucker (fa/fa) rat model of obesity and insulin resistance after neutralizing TNF-alpha with a soluble TNF receptor (TNFR)-lgG fusion protein. This neutralization resulted in a marked increase in insulin-stimulated autophosphorylation of the IR, as well as phosphorylation of insulin receptor substrate 1 (IRS-1) in muscle and fat tissues of the fa/fa rats, restoring them to near control (lean) levels. In contrast, no significant changes were observed in insulin-stimulated tyrosine phosphorylations of IR and IRS-1 in liver. The physiological significance of the improvements in IR signaling was indicated by a concurrent reduction in plasma glucose, insulin, and free fatty acid levels. These results demonstrate that TNF-alpha participates in obesity-related systemic insulin resistance by inhibiting the IR tyrosine kinase in the two tissues mainly responsible for insulin-stimulated glucose uptake: muscle and fat.  相似文献   

20.
The mechanism of TNF-alpha to regulate glucose metabolism remains unclear. To further delineate the TNF-alpha signal transduction pathway mediating glucose metabolism, we utilized L6 rat myoblasts which contain the receptors for the insulin-like growth factor-I (IGF-I) and TNF-alpha, and the ability of both ligands to stimulate glucose uptake was compared. IGF-I (6.5 nM) maximally stimulated glucose uptake 7-fold after 24 h incubation, while 23 nM TNF-alpha maximally stimulated glucose uptake 3-fold only after 48 h incubation. IGF-I receptor beta-subunit, insulin receptor substrate-1 (IRS-1), and mitogen-activated protein (MAP) kinase were all phosphorylated in response to 6.5 nM IGF-I after 10 min incubation. In contrast, the treatment with 23 nM TNF-alpha failed to phosphorylate either IGF-I receptor beta-subunit or IRS-1 but did phosphorylate MAP kinase as much as IGF-I did. Despite a similar extent to which TNF-alpha induced MAP kinase phosphorylation as IGF-I did, TNF-alpha stimulated glucose uptake less compared to IGF-I. The results indicate that MAP kinase phosphorylation is not sufficient for glucose uptake in L6 myoblasts. TNF-alpha-elicited signal transduction to glucose uptake may utilize a different pathway from that seen with IGF-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号