首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
TGF-beta has been shown to play a central role in regulating inflammatory responses; thus, understanding the factors involved in the generation of TGF-beta-producing cells could lead to interventions that are useful in effecting disease progression. In initial studies, the capacity of naive CD4+ T cells from TCR transgenic (Tg) mice to produce TGF-beta following primary and secondary stimulation was assessed. TGF-beta, IL-4, or IFN-gamma production could not be detected from highly purified naive CD4+/lymphocyte endothelial cell adhesion molecule (LECAM)-1high cells following primary stimulation for 36 h with plate-bound anti-CD3, anti-CD28, and IL-2. This population was subsequently used to study the differentiation of TGF-beta-producing CD4+ T cells. In further studies, naive CD4+/LECAM-1high cells from TCR transgenic mice of both the BALB/c and B10.A backgrounds were stimulated with T-depleted spleen cells (TDS) and specific peptide in the presence of various cytokines and/or cytokine antagonists for 5 days, restimulated, and TGF-beta, IL-4, and IFN-gamma production were measured. Priming conditions favoring high IL-4 production and/or low IFN-gamma production greatly enhanced TGF-beta production in secondary cultures. Furthermore, the presence of IL-10 in cultures was associated with an increase in TGF-beta production following restimulation. The importance of IL-4 and IFN-gamma in regulating TGF-beta production was confirmed in studies showing that cells from IFN-gamma(-/-) mice produced more TGF-beta, while cells from IL-4(-/-) mice produced less TGF-beta compared with wild-type controls. Finally, the addition of exogenous TGF-beta to priming cultures significantly enhanced the production of TGF-beta upon restimulation, demonstrating that TGF-beta has a role in self-regulating its own production.  相似文献   

3.
Stimulation of human monocytes with LPS induces expression of multiple cytokines, including TNF-alpha, IL-1 beta, IL-6, and IL-10, IL-10 expression is delayed relative to that of TNF-alpha, IL-1 beta, and IL-6. Furthermore, IL-10 feedback inhibits expression of TNF-alpha, IL-1 beta, and IL-6, thus providing an efficient autocrine mechanism for controlling proinflammatory cytokine production in monocytes. The Th1-type lymphokine, IFN-gamma, markedly up-regulates TNF-alpha production in monocytes. However, the precise mechanism by which IFN-gamma mediates this effect is unknown. We examined the effects of IFN-gamma on IL-10 expression in LPS-stimulated monocytes, and the relationship between IL-10 and TNF-alpha production in these cells. LPS stimulation induced rapid, ordered expression of multiple cytokines. Steady-state mRNA levels for TNF-alpha increased rapidly, reached maximal levels by 2 to 3 h poststimulation, and then declined sharply. IL-1 beta and IL-6 mRNA levels also increased markedly following stimulation with LPS, but decreased more slowly than did TNF-alpha. Down-regulation of mRNA for TNF-alpha, IL-1 beta, and IL-6 coincided with a delayed and more gradual increase in IL-10 mRNA levels. Furthermore, neutralization of IL-10 with anti-IL-10 Abs prolonged TNF-alpha mRNA expression, and significantly increased net TNF-alpha production. IFN-gamma suppressed expression of IL-10 mRNA and protein in a dose-dependent manner. Moreover, inhibition of IL-10 production correlated with a marked increase in both the magnitude and duration of TNF-alpha expression. Thus, potentiation of TNF-alpha production by IFN-gamma in monocytes is coupled to inhibition of endogenous IL-10 expression.  相似文献   

4.
We studied the potential role of a cytokine regulatory mechanism(s) in LPS-dependent reprogramming and modulation of TNF-alpha and nitric oxide (NO) responses in mouse peritoneal macrophages. Reciprocal regulation of TNF-alpha and NO production by LPS-primed and LPS-stimulated macrophages was found to be dependent on the presence of soluble secretory products released by the cells during the initial LPS priming interaction. Pretreatment of naive macrophages with different mouse recombinant cytokines such as rIL-10, rIL-12, and rIFN-gamma dose dependently and differentially regulated subsequent LPS-induced production of TNF-alpha, IL-6, and NO by cytokine-primed cells. Analysis of IL-12 and IL-10 levels present in culture supernatants of LPS-primed and LPS-stimulated macrophages revealed a high degree of correlation between the profiles of TNF-alpha and IL-12 as well as NO and IL-10. Furthermore, LPS priming of macrophages in the presence of anti-IL-12-neutralizing mAb attenuated TNF-alpha responses while at the same time up-regulated NO production. In contrast, neutralization of endogenous IL-10 with anti-IL-10 mAb resulted in considerable TNF-alpha response at LPS priming doses under conditions that would otherwise strongly inhibit TNF-alpha production. We also found that the initial LPS priming of naive macrophages differentially and dose dependently regulates expression of mRNAs for IL-10, IL-12, and IFN-gamma in LPS-primed macrophages. Collectively, our data provide experimental support for the hypothesis that a cytokine regulatory network, most probably autocrine, tightly controls the reciprocal modulation of TNF-alpha and NO responses in LPS-primed macrophages.  相似文献   

5.
Administration of IFN-gamma and IFN-alpha may protect or induce autoimmune diseases. Although the in vitro regulation of monokine secretion by IFN-gamma have been extensively studied, the regulatory function of IFN-alpha has not yet been elucidated. We compared IFN-alpha and IFN-gamma, added alone or simultaneously before bacterial stimulation, for the control of monokine release and the expression of costimulatory molecules by human monocytes. Our data show that: 1) IFN-alpha primes monocytes for increased production of IL-10 in response to Staphylococcus aureus Cowan I strain (SAC) but not to LPS, leading to a lack of IFN-alpha priming for TNF-alpha secretion; 2) pretreatment of monocytes with IFN-alpha inhibits LPS- or SAC-induced IL-12p40 production but unexpectedly enhances the release of the biologically active form of IL-12 (IL-12p70); 3) IFN-alpha and IFN-gamma exert an antagonistic effect on LPS- and SAC-induced IL-10 as well as IL-12p40 release, whereas they further enhance IL-12p70 production when added simultaneously; 4) in contrast to IFN-alpha, IFN-gamma primes monocytes to enhance LPS- or SAC-induced TNF-alpha and IL-12 production, but surprisingly, it increases IL-10 production by monocytes following LPS but not SAC stimulation; and finally, 5) IFN-alpha pretreatment selectively up-regulates CD80 and MHC class I expression on monocytes. It is proposed that the outcome of the immune response at the site of inflammation may depend on both the type of bacterial injury (gram-positive or -negative) and of locally produced IFNs, and that the differential and opposite effects of type I and type II IFNs on monocytes may account for the beneficial or detrimental effects of IFN-alpha therapy.  相似文献   

6.
In an attempt to increase the number of macrophages available for reinfusion in immunotherapy trials, GM-CSF was injected in vivo to mobilize circulating blood monocytes in 2 cancer patients. Subsequently mononuclear cells were collected by apheresis, cultured in the presence of GM-CSF and activated with IFN-gamma. This procedure resulted in the harvesting of 1.3 to 3.1 x 10(9) (mean 2 x 10(9)) macrophages per apheresis, product which was very well tolerated at autologous reinfusion. These infusions did not induce increased levels of TNF-alpha, IL-6, soluble CD14 nor nitrates in blood plasma (or urine). The lack of TNF-alpha and IL-6 release in blood plasma could explain the good tolerance of these infusions. No in vivo anti-tumoural activity of these high numbers of infused macrophages could be observed.  相似文献   

7.
8.
IL-12 is important for Th1 differentiation. Myeloid-derived antigen-presenting cells (APC) such as monocytes, macrophages (Mphi) and dendritic cells (DC) are believed to be major sources of IL-12 in vivo. We have compared IL-12 production of fresh monocytes with Mphi differentiated in vitro using macrophage colony-stimulating factor (M-CSF) or human plasma, and in vitro generated dendritic cells, since these differentiated cell types represent APC at sites of antigen challenge. Macrophages stimulated with lipopolysaccharide (LPS) or heat-killed Listeria monocytogenes in the presence or absence of IFN-gamma produced minimal IL-12 p70 by comparison with DC or monocytes, despite comparable production of TNF-alpha. M-CSF-induced Mphi produced low levels of IL-10 constitutively and high levels after stimulation with LPS, but neutralization of IL-10 did not augment Mphi IL-12 production. Exposure of Mphi to TNF-alpha, granulocyte-macrophage CSF or IFN-gamma did not substantially up-regulate IL-12. Therefore M-CSF induces a differentiated Mphi phenotype in which IL-12 production is down-regulated, perhaps irreversibly. This may be the default pathway for monocyte-Mphi development in the absence of inflammation.  相似文献   

9.
The clinical spectrum of leishmaniasis and control of the infection are influenced by the parasite-host relationship. The role of cellular immune responses of the Th1 type in the protection against disease in experimental and human leishmaniasis is well established. In humans, production of IFN-gamma is associated with the control of infection in children infected by Leishmania chagasi. In visceral leishmaniasis, an impairment in IFN-gamma production and high IL-4 and IL-10 levels (Th2 cytokines) are observed in antigen-stimulated peripheral blood mononuclear cells (PBMC). Moreover, IL-12 restores IFN-gamma production and enhances the cytotoxic response. IL-10 is the cytokine involved in down-regulation of IFN-gamma production, since anti-IL-10 monoclonal antibody (mAb) restores in vitro IFN-gamma production and lymphoproliferative responses, and IL-10 abrogates the effect of IL-12. In cutaneous and mucosal leishmaniasis, high levels of IFN-gamma are found in L. amazonensis-stimulated PBMC. However, low or absent IFN-gamma levels were observed in antigen-stimulated PBMC from 50% of subjects with less than 60 days of disease (24 +/- 26 pg/ml). This response was restored by IL-12 (308 +/- 342 pg/ml) and anti-IL-10 mAb (380 +/- 245 pg/ml) (P < 0.05). Later during the disease, high levels of IFN-gamma and TNF-alpha are produced both in cutaneous and mucosal leishmaniasis. After treatment there is a decrease in TNF-alpha levels (366 +/- 224 pg/ml before treatment vs 142 +/- 107 pg/ml after treatment, P = 0.02). Although production of IFN-gamma and TNF-alpha might be involved in the control of parasite multiplication in the early phases of Leishmania infection, these cytokines might also be involved in the tissue damage seen in tegumentary leishmaniasis.  相似文献   

10.
We have developed a direct immunocytochemical technique to identify cytokine and chemokine production in epidermal Langerhans cells (LC) and in vitro derived CD14-, CD1a+, CD83+, CD40+ dendritic cells (DC) at the single cell level. Formaldehyde fixation combined with saponin permeabilization preserved cellular morphology and generated a characteristic juxtanuclear staining signal due to the accumulation of cytokine to the Golgi organelle. This approach was used for the assessment of TNF-alpha, IL-6, IL-8, IL-10, IL-12, GM-CSF, MIP-1alpha, MIP-1beta and RANTES producing cells. In contrast, a diffuse cytoplasmic staining was evident for IL-1ra, IL-1alpha and IL-1beta production. IL-1ra and IL-1alpha were expressed in 10-25% of unstimulated cultured cells, while all the other cytokines were undetectable. IL-1ra, IL-1alpha and IL-1beta were also the dominating cytokines, expressed in up to 85% of the DC, after 3 h of LPS stimulation. A significantly lower number of cells (0-5%) synthesized TNF-alpha, IL-6, IL-10, IL-12 and GM-CSF. The incidence of chemokine producing cells (IL-8, RANTES, MIP-1alpha, MIP-1beta) peaked 10 h after LPS stimulation in up to 60% of the DC. Both immature CD83- and mature CD83+ DC as well as LC had a similar cytokine production pattern. Thus, in comparison to monocytes, LPS stimulation of DC generated a lower incidence of TNF-alpha, IL-6, IL-10 and IL-12 producing cells while IL-1 was expressed in a comparable number of cells.  相似文献   

11.
In this study, cytokine mRNA profiles in microglia from newborn rats were detected by in situ hybridization. Under natural culture conditions, microglia expressed the immunosuppressive transforming growth factor-beta 1 (TGF-beta 1) and interleukin (IL) 10 to a greater degree than the pro-inflammatory cytokines IL-1 beta, IL-6, IL-12, interferon-gamma (IFN-gamma) and TNF-alpha. High TGF-beta 1 and IL-10 levels could reflect one mechanism for immune privilege within the CNS under physiological conditions. Stimulation of microglia with LPS or IFN gamma resulted in strong up-regulation of proinflammatory cytokines, while TGF-beta 1 and IL-10 were down-regulated. These effects of LPS or IFN-gamma are anticipated to reflect immunopathogenic processes within the CNS.  相似文献   

12.
To determine whether the Th1 response in tuberculosis correlated with IL-12R expression, we measured expression of the IL-12R beta 1 and IL-12R beta 2 subunits, as well as IL-12R beta 2 mRNA expression in tuberculosis patients and healthy tuberculin reactors. In tuberculosis patients, IFN-gamma production by Mycobacterium tuberculosis-stimulated PBMC was reduced, the percentages of T cells expressing IL-12R beta 1 and IL-12R beta 2 were significantly decreased, and IL-12R beta 2 mRNA expression was also markedly reduced. In contrast, in pleural fluid and lymph nodes at the site of disease in tuberculosis patients, in which IFN-gamma production is enhanced, IL-12R beta 2 mRNA expression was also increased. In M. tuberculosis-stimulated peripheral blood T cells from tuberculosis patients, anti-IL-10 and anti-TGF-beta enhanced IL-12R beta 1 and IL-12R beta 2 expression, and IFN-gamma production. In M. tuberculosis-stimulated peripheral blood T cells from healthy tuberculin reactors, recombinant IL-10 and TGF-beta reduced IL-12R beta 1 and IL-12R beta 2 expression, as well as IFN-gamma production. In combination with prior studies showing increased production of TGF-beta by blood monocytes from tuberculosis patients, this suggests that increased TGF-beta production is the underlying abnormality that reduces IL-12R beta 1 and IL-12R beta 2 expression in tuberculosis. Our findings provide evidence that IL-12R expression correlates well with IFN-gamma production in human tuberculosis, and that expression of IL-12R beta 1 and IL-12R beta 2 may play a central role in mediating a protective Th1 response.  相似文献   

13.
AD is associated with a bias of the T helper cells to show increased IL-4 and reduced interferon-gamma (IFN-gamma) production. The production of IFN-gamma and IL-4 and the development of Th cells into either high IFN-gamma or high IL-4 producers is strongly influenced by factors produced by antigen-presenting cells (APC), like IL-12 and prostaglandin E2 (PGE2). IL-12 selectively enhances IFN-gamma production and favours the development of IFN-gamma-producing Th cells, whereas PGE2 selectively inhibits IFN-gamma production by Th cells. The aim of this study was to test whether the increased IL-4/IFN-gamma production ratio by Th cells in AD can be explained by an increased PGE2/IL-12 production ratio by the APC. Monocytes were used as APC source. PGE2 and IL-12 production by lipopolysaccharide (LPS)-stimulated monocytes from 12 AD patients and 12 non-atopic controls was determined using two complementary experimental systems, whole blood cultures and purified monocytes. In addition, we determined IL-6 production as a measure of monocyte activation, and IL-10 production because IL-12 production by monocytes is highly influenced by endogenously produced IL-10. The monocytes from AD patients showed normal production levels of IL-6 and IL-10, a two-fold, but non-significant decrease in IL-12 production, and a significantly (three-fold) higher PGE2 production than those from non-atopic controls. Here we show for the first time that enhanced PGE2 production by monocytes in AD is not accompanied by a general rise in cytokine production. We conclude that AD is indeed associated with an increased PGE2/IL-12 production ratio by monocytes.  相似文献   

14.
The interleukin-12 receptor (IL-12R)beta1 chain is an essential component of the functional IL-12R on both human T and natural killer cells. In this report it is shown that activation of human peripheral blood mononuclear cells (PBMC) with anti-CD3 monoclonal antibody (mAb) or phytohemagglutinin resulted in the up-regulation of IL-12Rbeta1 expression and IL-12 binding. Kinetic studies revealed that maximum expression of IL-12Rbeta1 and IL-12 binding occurred on days 3-4. Anti-CD3-induced expression of IL-12Rbeta1 chain and IL-12 binding by PBMC was augmented by anti-CD28 mAb, indicating that the potentiating effect of anti-CD28 on T cell responses to IL-12 could be mediated, at least in part, by the enhancement of IL-12R expression. Among 16 cytokines tested, IL-2, IL-7 and IL-15 markedly induced IL-12Rbeta1 expression and IL-12 binding on resting PBMC, whereas IL-1alpha and tumor necrosis factor-alpha had a minimal enhancing effect. In contrast, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, interferon (IFN)-alpha, IFN-gamma, granulocyte/macrophage colony-stimulating factor and transforming growth factor (TGF)-beta2 had no detectable enhancing effect. Anti-CD3-induced expression of IL-12Rbeta1 and of low-affinity IL-12 binding sites was partially inhibited by TGF-beta2, IL-10 and IL-4; however, TGF-beta2 and IL-10 completely abolished anti-CD3-induced expression of high-affinity IL-12 binding sites. Consistent with the reduction of high affinity IL-12 binding sites, PBMC activated with anti-CD3 mAb in the presence of TGF-beta2 or IL-10 failed to produce IFN-gamma or to proliferate in response to IL-12. These results suggest that Th2 cell-derived cytokines can inhibit IL-12-induced biological functions by inhibiting IL-12R expression and that expression of a second subunit of the IL-12R (IL-12Rbeta2), required for the formation of high-affinity IL-12 binding sites, may be more highly regulated by TGF-beta2 and IL-10 than is expression of IL-12Rbeta1.  相似文献   

15.
IFN-gamma plays an important role in modulating inflammatory responses within the CNS. The cell type responsible for IFN-gamma production within the CNS is less well defined. We examined the production and regulation of IFN-gamma by adult rat astrocytes. IFN-gamma was hardly detectable in cultured astrocytes, while addition of TNF-alpha dose-dependently induced IFN-gamma production by astrocytes. No IFN-gamma production by astrocytes could be induced by LPS, IL-10 or TGF-beta 1. TNF-alpha-induced IFN-gamma production by astrocytes was inhibited by treatment of astrocytes with TGF-beta 1, but not IL-10. TNF-alpha induced IFN-gamma production by astrocytes was confirmed by using immunocytochemical staining. The data suggest that astrocyte-derived IFN-gamma induced by TNF-alpha may participate in local immune reactions of the brain in an autocrine and paracrine fashion.  相似文献   

16.
Products of an activated immune system may affect cells within the immune system as well as nonlymphoid cells in the local environment. Given the immunologically activated state of the intestinal tract, it is conceivable that locally produced cytokines could regulate epithelial cell function. To assess whether epithelial cells are targets for particular cytokines, we initiated studies on the binding of a panel of proinflammatory cytokines in freshly isolated epithelial cells from normal and inflammatory bowel disease (IBD) patients as well as in cell lines. Isolated intestinal epithelial cells (IEC) were stained with phycoerythrin-conjugated or biotinylated cytokines to determine the expression and density of receptors for IL-1beta, IL-6, granulocyte-macrophage CSF (GM-CSF), and TNF-alpha. Receptors for IL-1beta, IL-6, and GM-CSF were readily detectable in all epithelial cell preparations at levels equal to (GM-CSFR) or lower than those seen on monocytes. However TNFalpha-R were not detectable on freshly isolated IECs. Receptor density was greater in surface vs crypt epithelial cells, but no significant differences were seen between normal and IBD epithelial cells. Expression of IL-1R and IL-6R was enhanced by LPS and IFN-gamma. Functionally, IL-1beta enhanced proliferation of the IEC cell line, DLD1, whereas GM-CSF treatment of de-differentiated crypt-like DLD1 and HT29 cells resulted in enhanced expression of ICAM-1. Furthermore, TNF-alpha treatment enhanced the secretion of IL-8 and GRO-alpha in HT29 cells, but not in freshly isolated IEC cultures. The differential binding and function of proinflammatory cytokines on IEC support the hypothesis that these cytokines may be involved in normal physiological processes as well as in regulating mucosal immune responses.  相似文献   

17.
The role of nocturnal sleep for normal immune regulation and its relation to circadian rhythm was examined in 10 men participating in two 51-h sessions. One session included two regular wake-sleep cycles; the other included a night of sustained wakefulness followed by a night of recovery sleep. Blood was collected every 3 h to determine PBMC counts, including the enumeration of monocytes, NK cells, and lymphocyte subsets (CD19+, CD3+, CD4+, CD8+, HLA-DR+). Production of IL-1beta, TNF-alpha, IL-2, and IFN-gamma was determined after stimulation of whole blood samples with LPS and PHA, respectively. Concentrations of IL-6 and cortisol were assessed in plasma. Enumeration of cells indicated significant circadian rhythms for all PBMC subsets under conditions of sustained wakefulness. Compared with sustained wakefulness, nocturnal sleep acutely reduced the numbers of monocytes, NK cells, and counts of all lymphocyte subsets. However, in the afternoon and evening of the day following sleep, counts of NK cells and lymphocytes were significantly higher than after nocturnal wakefulness, indicating that effects of sleep interacted with those of the circadian pacemaker. Sleep markedly enhanced production of IL-2 by T cells (CD3+) but did not influence production of IL-1beta and TNF-alpha, or IL-6 concentrations. Effects of sleep were not mediated by changes in cortisol. The decrease in monocytes, NK cells, and lymphocytes, together with an increased production of IL-2 during sleep, may serve to support ongoing immune defense in extravascular lymphoid tissue during a time of diminished acute Ag challenge.  相似文献   

18.
Wegener's granulomatosis (WG) is a granulomatous vasculitis that affects the upper respiratory tract, lung, and kidney. Since T cells make up a significant proportion of cells infiltrating granulomatous lesions in WG, we investigated the proliferative response and cytokine profile of T cells from these patients. PBMCs were isolated from 12 patients with active WG, 7 patients with inactive disease, and 12 healthy normal donors. PBMCs from clinically active WG patients exhibited increased proliferation following stimulation with either PMA/ionomycin or anti-CD2 and anti-CD28, when compared with normal donors. In addition, these PBMCs exhibited increased secretion of IFN-gamma, but not of IL-4, IL-5, or IL-10. Furthermore, TNF-alpha production from PBMCs and CD4+ T cells isolated from patients with WG was elevated, when compared with healthy donors. In further studies, we investigated the ability of WG patients' monocytes to produce IL-12 and showed that both inactive and active patients produced increased amounts of IL-12. Finally, the in vitro IFN-gamma production by WG PBMC is inhibited in a dose-dependent manner by exogenous IL-10. These data suggest that T cells from WG patients overproduce IFN-gamma and TNF-alpha, probably due to dysregulated IL-12 secretion, and that IL-10 may therefore have therapeutic implications for this disease.  相似文献   

19.
Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.  相似文献   

20.
The aim of this study was to further assess the role of pooled human immunoglobulin (PHIG) on cytokine production from PBMC stimulated with a bacterial superantigen. Human PBMC were cultured with Streptococcus pyrogenic exotoxin A (SPE-A) with or without PHIG and several proinflammatory cytokine levels of culture supernatants were measured. Serum cytokine levels of KD patients before and after PHIG therapy were also examined. PHIG greatly reduced the production of IL-12, interferon-gamma (IFN-gamma) and other cytokines from SPE-A-stimulated PBMC, while exogenous IL-12, but neither IL-1 nor tumour necrosis factor-alpha (TNF-alpha), restored IFN-gamma production inhibited by PHIG. Although PHIG partially adsorbed SPE-A, its inhibitory effect on cytokine production was not played by anti-SPE-A antibody. Although purified CD4+ T cells cultured with human HLA-DR-transfected mouse L cells and SPE-A could not effectively produce IFN-gamma, they produced large amounts of IFN-gamma if exogenous IL-12 was introduced. KD patients in the acute phase had higher levels of serum IFN-gamma than did controls and patients with bacterial infection. Although IL-12 levels of children with or without KD were not significantly different, IL-12 levels of children were much higher than those of adults. However, serum levels of IL-12 of KD patients were transiently but significantly decreased by PHIG therapy and IFN-gamma amounts subsequently reverted to basal levels thereafter. These findings indicate that PHIG inhibits IL-12 production of SPE-A-activated monocytes and thereby decreases IFN-gamma synthesis by T cells and suggest that inhibition of IL-12 and IFN-gamma production is an important part of the mechanisms underlying PHIG therapy on KD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号