首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In this paper we study the generative capacity of EOL forms from two different points of view. On the one hand, we consider the generative capacity of special EOL forms which one could call linear like and context free like, establishing the existence of a rich variety of non-regular sub-EOL language families. On the other hand, we propose the notion of a generator L of a language family We mean by this that any synchronized EOL system generating L generates — if understood as an EOL form — all languages of . We characterize the generators of the family of regular languages, and prove that other well known language families do not have generators.Partially supported under NSE Research Council of Canada, grant No. A-7700  相似文献   

2.
Predicting Nearly As Well As the Best Pruning of a Decision Tree   总被引:2,自引:2,他引:0  
Many algorithms for inferring a decision tree from data involve a two-phase process: First, a very large decision tree is grown which typically ends up over-fitting the data. To reduce over-fitting, in the second phase, the tree is pruned using one of a number of available methods. The final tree is then output and used for classification on test data.In this paper, we suggest an alternative approach to the pruning phase. Using a given unpruned decision tree, we present a new method of making predictions on test data, and we prove that our algorithm's performance will not be much worse (in a precise technical sense) than the predictions made by the best reasonably small pruning of the given decision tree. Thus, our procedure is guaranteed to be competitive (in terms of the quality of its predictions) with any pruning algorithm. We prove that our procedure is very efficient and highly robust.Our method can be viewed as a synthesis of two previously studied techniques. First, we apply Cesa-Bianchi et al.'s (1993) results on predicting using expert advice (where we view each pruning as an expert) to obtain an algorithm that has provably low prediction loss, but that is computationally infeasible. Next, we generalize and apply a method developed by Buntine (1990, 1992) and Willems, Shtarkov and Tjalkens (1993, 1995) to derive a very efficient implementation of this procedure.  相似文献   

3.
We show that a number of geometric problems can be solved on a n × n mesh-connected computer (MCC) inO(n) time, which is optimal to within a constant factor, since a nontrivial data movement on an MCC requires (n) time. The problems studied here include multipoint location, planar point location, trapezoidal decomposition, intersection detection, intersection of two convex polygons, Voronoi diagram, the largest empty circle, the smallest enclosing circle, etc. TheO(n) algorithms for all of the above problems are based on the classical divide-and-conquer problem-solving strategy.This work was supported in part by the National Science Foundation under Grant DCR 8420814. A preliminary version was presented in the 1987 FJCC, Dallas, TX.  相似文献   

4.
Suppose a directed graph has its arcs stored in secondary memory, and we wish to compute its transitive closure, also storing the result in secondary memory. We assume that an amount of main memory capable of holdings values is available, and thats lies betweenn, the number of nodes of the graph, ande, the number of arcs. The cost measure we use for algorithms is theI/O complexity of Kung and Hong, where we count 1 every time a value is moved into main memory from secondary memory, or vice versa.In the dense case, wheree is close ton 2, we show that I/O equal toO(n 3/s) is sufficient to compute the transitive closure of ann-node graph, using main memory of sizes. Moreover, it is necessary for any algorithm that is standard, in a sense to be defined precisely in the paper. Roughly, standard means that paths are constructed only by concatenating arcs and previously discovered paths. For the sparse case, we show that I/O equal toO(n 2e/s) is sufficient, although the algorithm we propose meets our definition of standard only if the underlying graph is acyclic. We also show that(n 2e/s) is necessary for any standard algorithm in the sparse case. That settles the I/O complexity of the sparse/acyclic case, for standard algorithms. It is unknown whether this complexity can be achieved in the sparse, cyclic case, by a standard algorithm, and it is unknown whether the bound can be beaten by nonstandard algorithms.We then consider a special kind of standard algorithm, in which paths are constructed only by concatenating arcs and old paths, never by concatenating two old paths. This restriction seems essential if we are to take advantage of sparseness. Unfortunately, we show that almost another factor ofn I/O is necessary. That is, there is an algorithm in this class using I/OO(n 3e/s) for arbitrary sparse graphs, including cyclic ones. Moreover, every algorithm in the restricted class must use(n 3e/s/log3 n) I/O, on some cyclic graphs.The work of this author was partially supported by NSF grant IRI-87-22886, IBM contract 476816, Air Force grant AFOSR-88-0266 and a Guggenheim fellowship.  相似文献   

5.
When verifying concurrent systems described by transition systems, state explosion is one of the most serious problems. If quantitative temporal information (expressed by clock ticks) is considered, state explosion is even more serious. We present a notion of abstraction of transition systems, where the abstraction is driven by the formulae of a quantitative temporal logic, called qu-mu-calculus, defined in the paper. The abstraction is based on a notion of bisimulation equivalence, called , n-equivalence, where is a set of actions and n is a natural number. It is proved that two transition systems are , n-equivalent iff they give the same truth value to all qu-mu-calculus formulae such that the actions occurring in the modal operators are contained in , and with time constraints whose values are less than or equal to n. We present a non-standard (abstract) semantics for a timed process algebra able to produce reduced transition systems for checking formulae. The abstract semantics, parametric with respect to a set of actions and a natural number n, produces a reduced transition system , n-equivalent to the standard one. A transformational method is also defined, by means of which it is possible to syntactically transform a program into a smaller one, still preserving , n-equivalence.  相似文献   

6.
Indecomposable local maps of one-dimensional tessellation automata are studied. The main results of this paper are the following. (1) For any alphabet containing two or more symbols and for anyn 1, there exist indecomposable scope-n local maps over . (2) If is a finite field of prime order, then a linear scope-n local map over is indecomposable if and only if its associated polynomial is an irreducible polynomial of degreen – 1 over , except for a trivial case. (3) Result (2) is no longer true if is a finite field whose order is not prime.  相似文献   

7.
Given a finite setE R n, the problem is to find clusters (or subsets of similar points inE) and at the same time to find the most typical elements of this set. An original mathematical formulation is given to the problem. The proposed algorithm operates on groups of points, called samplings (samplings may be called multiple centers or cores); these samplings adapt and evolve into interesting clusters. Compared with other clustering algorithms, this algorithm requires less machine time and storage. We provide some propositions about nonprobabilistic convergence and a sufficient condition which ensures the decrease of the criterion. Some computational experiments are presented.  相似文献   

8.
On Bounding Solutions of Underdetermined Systems   总被引:1,自引:0,他引:1  
Sufficient conditions for the existence and uniqueness of a solution x* D (R n ) of Y(x) = 0 where : R n R m (m n) with C 2(D) where D R n is an open convex set and Y = (x)+ are given, and are compared with similar results due to Zhang, Li and Shen (Reliable Computing 5(1) (1999)). An algorithm for bounding zeros of f (·) is described, and numerical results for several examples are given.  相似文献   

9.
Summary For a family of languages , CAL() is defined as the family of images of under nondeterministic two-way finite state transducers, while FINITE · VISIT() is the closure of under deterministic two-way finite state transducers; CAL0()= and for n0, CAL n+1()=CAL n (CAL()). For any semiAFL , if FINITE · VISIT() CAL(), then CAL n () forms a proper hierarchy and for every n0, FINITE · VISIT(CALn()) CAL n+1() FINITE · VISIT(CAL n+1()). If is a SLIP semiAFL or a weakly k-iterative full semiAFL or a semiAFL contained in any full bounded AFL, then FINITE · VISIT() CAL() and in the last two cases, FINITE · VISIT(). If is a substitution closed full principal semiAFL and FINITE · VISIT(), then FINITE · VISIT() CAL(). If is a substitution closed full principal semiAFL generated by a language without an infinite regular set and 1 is a full semiAFL, then is contained in CALm(1) if and only if it is contained in 1. Among the applications of these results are the following. For the following families , CAL n () forms a proper hierarchy: =INDEXED, =ETOL, and any semiAFL contained in CF. The family CF is incomparable with CAL m (NESA) where NESA is the family of one-way nonerasing stack languages and INDEXED is incomparable with CAL m (STACK) where STACK is the family of one-way stack languages.This work was supported in part by the National Science Foundation under Grants No. DCR74-15091 and MCS-78-04725  相似文献   

10.
We consider the half-space range-reporting problem: Given a setS ofn points in d, preprocess it into a data structure, so that, given a query half-space , allk points ofS can be reported efficiently. We extend previously known static solutions to dynamic ones, supporting insertions and deletions of points ofS. For a given parameterm,n m n d/2 and an arbitrarily small positive constant , we achieveO(m 1+) space and preprocessing time, O((n/m d/2 logn+k) query time, and O(m1+n) amortized update time (d 3). We present, among others, the following applications: an O(n1+)-time algorithm for computing convex layers in 3, and an output sensitive algorithm for computing a level in an arrangements of planes in 3, whose time complexity is O((b+n) n, whereb is the size of the level.Work by the first author has been supported by National Science Foundation Grant CCR-91-06514. A preliminary version of this paper appeared in Agarwalet al. [2], which also contains the results of [20] on dynamic bichromatic closest pair and minimum spanning trees.  相似文献   

11.
A theory is developed for the construction of carry-save networks with minimal delay, using a given collection of carry-save adders each of which may receive inputs and produce outputs using several different representation standards.The construction of some new carry-save adders is described. Using these carry-save adders optimally, as prescribed by the above theory, we get {, , }-circuits of depth 3.48 log2 n and {, , }-circuits of depth 4.95 log2 n for the carry-save addition ofn numbers of arbitrary length. As a consequence we get multiplication circuits of the same depth. These circuits put out two numbers whose sum is the result of the multiplication. If a single output number is required then the depth of the multiplication circuits increases respectively to 4.48 log2 n and 5.95 log2 n.We also get {, , }-formulae of sizeO (n 3.13) and {, }-formulae of sizeO (n 4.57) for all the output bits of a carry-save addition ofn numbers. As a consequence we get formulae of the same size for the majority function and many other symmetric Boolean functions.  相似文献   

12.
Summary Given a sequence of positive weights, W=w 1...w n >0, there is a Huffman tree, T (T-up) which minimizes the following functions: max{d(wi)}; d(wi); f(d(wi)) w i(here d(w i) represents the distance of a leaf of weight w i to the root and f is a function defined for nonnegative integers having the property that g(x) = f(x + 1) – f(x) is monotone increasing) over the set of all trees for W having minimal expected length. Minimizing the first two functions was first done by Schwartz [5]. In the case of codes where W is a sequence of probabilities, this implies that the codes based on T have all their absolute central moments minimal. In particular, they are the least variance codes which were also described by Kou [3]. Furthermore, there exists a Huffman tree T, (T-down) which maximizes the functions considered above.However, if g(x) is monotone decreasing, T and T, respectively maximize and minimize f(d(wi) w i) over the set of all trees for W having minimal expected length. In addition, we derive a number of interesting results about the distribution of labels within Huffman trees. By suitable modifications of the usual Huffman tree construction, (see [1]) T and T can also be constructed in time O(n log n).  相似文献   

13.
For the three-index axial transportation polyhedron defined by the integer vector, existence of noninteger vertices was proved. In particular, the three-index n × m × k axial transportation polyhedron having vertices with r fractional components was shown to exist for and only for any number r {4,6,7,...,(n, m, k)}, where (n, m, k) = min{n, m + k - 2} + m + k - 2, n m k 3.  相似文献   

14.
An optimalO(log logn)-time CRCW-PRAM algorithm for computing all period lengths of a string is presented. Previous parallel algorithms compute the period only if it is shorter than half of the length of the string. The algorithm can be used to find all initial palindromes of a string in the same time and processor bounds. Both algorithms are the fastest possible over a general alphabet. We derive a lower bound for finding initial palindromes by modifying a known lower bound for finding the period length of a string [9]. Whenp processors are available the bounds become (n/p+log1+p/n2p).This work was partially supported by NSF Grant CCR-90-14605. D. Breslauer was partially supported by an IBM Graduate Fellowship while studying at Columbia University and by a European Research Consortium for Informatics and Mathematics postdoctoral fellowship.  相似文献   

15.
R. Kemp 《Acta Informatica》1989,26(8):711-740
Summary We consider a general additive weight of random trees which depends on the structure of the subtrees, on weight functions defined on the number of internal and external nodes and on the degrees of the nodes appearing in the tree and its subtrees. Choosing particular weight functions, the corresponding weight is an important parameter appearing in the analysis of sorting and searching algorithms. For a simply generated family of rooted planar trees , we shall derive a general approach to the computation of the average weight of a tree T with n nodes and m leaves for arbitrary weight functions. This general result implies exact and asymptotic expressions for many types of average weights of a tree T with n nodes if the weight functions are arbitrary polynomials in the number of nodes and leaves with coefficients depending on the node degrees.  相似文献   

16.
In this paper, we consider the linear interval tolerance problem, which consists of finding the largest interval vector included in ([A], [b]) = {x R n | A [A], b [b], Ax = b}. We describe two different polyhedrons that represent subsets of all possible interval vectors in ([A], [b]), and we provide a new definition of the optimality of an interval vector included in ([A], [b]). Finally, we show how the Simplex algorithm can be applied to find an optimal interval vector in ([A], [b]).  相似文献   

17.
Our starting point is a definition of conditional event EH which differs from many seemingly similar ones adopted in the relevant literature since 1935, starting with de Finetti. In fact, if we do not assign the same third value u (undetermined) to all conditional events, but make it depend on EH, it turns out that this function t(EH) can be taken as a general conditional uncertainty measure, and we get (through a suitable – in a sense, compulsory – choice of the relevant operations among conditional events) the natural axioms for many different (besides probability) conditional measures.  相似文献   

18.
We consider the maximum disjoint paths problem and its generalization, the call control problem, in the on-line setting. In the maximum disjoint paths problem, we are given a sequence of connection requests for some communication network. Each request consists of a pair of nodes, that wish to communicate over a path in the network. The request has to be immediately connected or rejected, and the goal is to maximize the number of connected pairs, such that no two paths share an edge. In the call control problem, each request has an additional bandwidth specification, and the goal is to maximize the total bandwidth of the connected pairs (throughput), while satisfying the bandwidth constraints (assuming each edge has unit capacity). These classical problems are central in routing and admission control in high speed networks and in optical networks.We present the first known constant-competitive algorithms for both problems on the line. This settles an open problem of Garay et al. and of Leonardi. Moreover, to the best of our knowledge, all previous algorithms for any of these problems, are (logn)-competitive, where n is the number of vertices in the network (and obviously noncompetitive for the continuous line). Our algorithms are randomized and preemptive. Our results should be contrasted with the (logn) lower bounds for deterministic preemptive algorithms of Garay et al. and the (logn) lower bounds for randomized non-preemptive algorithms of Lipton and Tomkins and Awerbuch et al. Interestingly, nonconstant lower bounds were proved by Canetti and Irani for randomized preemptive algorithms for related problems but not for these exact problems.  相似文献   

19.
A central component of the analysis of panel clustering techniques for the approximation of integral operators is the so-called -admissibility condition min {diam(),diam()} 2dist(,) that ensures that the kernel function is approximated only on those parts of the domain that are far from the singularity. Typical techniques based on a Taylor expansion of the kernel function require a subdomain to be far enough from the singularity such that the parameter has to be smaller than a given constant depending on properties of the kernel function. In this paper, we demonstrate that any is sufficient if interpolation instead of Taylor expansionisused for the kernel approximation, which paves the way for grey-box panel clustering algorithms.  相似文献   

20.
The termF-cardinality of (=F-card()) is introduced whereF: n n is a partial function and is a set of partial functionsf: n n . TheF-cardinality yields a lower bound for the worst-case complexity of computingF if only functionsf can be evaluated by the underlying abstract automaton without conditional jumps. This complexity bound isindependent from the oracles available for the abstract machine. Thus it is shown that any automaton which can only apply the four basic arithmetic operations needs (n logn) worst-case time to sortn numbers; this result is even true if conditional jumps witharbitrary conditions are possible. The main result of this paper is the following: Given a total functionF: n n and a natural numberk, it is almost always possible to construct a set such that itsF-cardinality has the valuek; in addition, can be required to be closed under composition of functionsf,g . Moreover, ifF is continuous, then consists of continuous functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号