首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work concerns numerical modeling of fluid-structure interaction(FSI) problems in a uniform smoothed particle hydrodynamics(SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.  相似文献   

2.
In ocean engineering, the applications are usually related to a free surface which brings so many interesting physical phenomena(e.g. water waves, impacts, splashing jets, etc.). To model these complex free surface flows is a tough and challenging task for most computational fluid dynamics(CFD) solvers which work in the Eulerian framework. As a Lagrangian and meshless method, smoothed particle hydrodynamics(SPH) offers a convenient tracking for different complex boundaries and a straightforward satisfaction for different boundary conditions. Therefore SPH is robust in modeling complex hydrodynamic problems characterized by free surface boundaries, multiphase interfaces or material discontinuities. Along with the rapid development of the SPH theory, related numerical techniques and high-performance computing technologies, SPH has not only attracted much attention in the academic community, but also gradually gained wide applications in industrial circles. This paper is dedicated to a review of the recent developments of SPH method and its typical applications in fluid-structure interactions in ocean engineering. Different numerical techniques for improving numerical accuracy, satisfying different boundary conditions, improving computational efficiency, suppressing pressure fluctuations and preventing the tensile instability, etc., are introduced. In the numerical results, various typical fluid-structure interaction problems or multiphase problems in ocean engineering are described, modeled and validated. The prospective developments of SPH in ocean engineering are also discussed.  相似文献   

3.
This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas including underground spaces. Taking the advantage of GPUs parallel computing techniques, simulations involving more than 107 particles can be achieved. We use a virtual geometric plane boundary to handle the outermost solid wall in order to save considerable video card memory for the GPU computing. To evaluate the accuracy of the new GPU-based SPH model, qualitative and quantitative comparison to a real flooding experiment is performed and the results of a numerical model based on Shallow Water Equations (SWEs) is given with good accuracy. With the new GPU-based SPH model, the effects of the building layouts and underground spaces on the propagation of dambreak flood through an intricate city layout are examined.  相似文献   

4.
A hybrid scheme coupling the discrete element method(DEM)with the computational fluid dynamics(CFD)is developed to model solid-liquid flows.Instead of solving the pressure Poisson equation,we use the compressible volume-averaged continuity and momentum equations with an isothermal stiff equation of state for the liquid phase in our CFD scheme.The motion of the solid phase is obtained by using the DEM,in which the particle-particle and particle-wall interactions are modelled by using the theoretical contact mechanics.The two phases are coupled through the Newton’s third law of motion.To verify the proposed method,the sedimentation of a single spherical particle is simulated in water,and the results are compared with experimental results reported in the literature.In addition,the drafting,kissing,and tumbling(DKT)phenomenon between two particles in a liquid is modelled and reasonable results are obtained.Finally,the numerical simulation of the density-driven segregation of a binary particulate suspension involving 10 000 particles in a closed container is conducted to show that the presented method is potentially powerful to simulate real particulate flows with large number of moving particles.  相似文献   

5.
With some popular tracking methods for free surface, simulations of several typical examples are carried out under various flow field conditions.The results show that the Smoothed Particle Hydrodynamics (SPH) method is very suitable in simulating the flow problems with a free surface.A viscous liquid droplet with an initial velocity impacting on a solid surface is simulated based on the SPH method, and the surface tension is considered by searching the free surface particles, the initial impact effect is co...  相似文献   

6.
作为无网格粒子法,SPH法在处理大变形、自由面流动问题时具有显著的优势.介绍了SPH法的基本数值方法,并基于SPH法数值模拟了2个二维溃坝问题,将计算结果与试验数据进行了比较,结果表明:SPH法在处理自由面时具有很强的适应性.尽管水面发生了翻卷、破碎等剧烈的变化,但SPH法仍然能够较好地捕捉到这些流动现象,同时数值模拟得到的水头位置和自由面形状均能与试验结果相吻合,表明SPH法在处理自由面问题时具有较高的准确性及可靠性.  相似文献   

7.
Smoothed particle hydrodynamics(SPH) is a Lagrangian, meshfree particle method and has been widely applied to different areas in engineering and science. Since its original extension to modeling free surface flows by Monaghan in 1994, SPH has been gradually developed into an attractive approach for modeling viscous incompressible fluid flows. This paper presents an overview on the recent progresses of SPH in modeling viscous incompressible flows in four major aspects which are closely related to the computational accuracy of SPH simulations. The advantages and disadvantages of different SPH particle approximation schemes, pressure field solution approaches, solid boundary treatment algorithms and particle adapting algorithms are described and analyzed. Some new perspectives and future trends in SPH modeling of viscous incompressible flows are discussed.  相似文献   

8.
Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model(moving particle semi-implicit(MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model(MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model(Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction(FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics(SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH(ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate,high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.  相似文献   

9.
王巍 《人民长江》2019,50(3):216-221
基于拉格朗日描述的光滑粒子动力学方法(SPH)擅长于处理自由面剧烈变化的水流现象,十分适合水利工程中泄洪等问题的数值模拟。然而,SPH方法通常采用均匀分布的粒子对流体计算域进行空间离散,对于工程问题而言需要的粒子数量较多、计算量大。为了突破SPH方法在实际大规模计算中的适用范围,采用C++和CUDA混合编程的技术,借助GPU实现了对SPH方法的并行加速。通过WES三圆弧段组成的光滑溢洪道过流问题,验证了GPU加速的SPH方法的计算精度和可靠性,计算效率相对原始的SPH仿真过程提高了61.8倍。最后,将GPU加速的SPH方法应用于水利工程的溢洪道泄流问题,分别模拟了光滑溢洪道和台阶式溢洪道流动特性,通过自由面的演化过程及泄流沿程截面上的速度分布状态,对比分析了台阶对泄流现象的影响。 〖HT5”H〗关〓键〓词:〖HT5”K〗  相似文献   

10.
This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set methods are outlined and two violent sloshing cases are considered. The computed results are compared with the corresponding experimental data for validation. The impact pressure and the deformations of free surface induced by sloshing are comparatively analyzed, and are in good agreement with experimental ones. Results show that both the MPS and level-set methods are good tools for simulation of violent sloshing flows. However, the second pressure peaks as well as breaking and splashing of free surface by the MPS method are captured better than by the level-set method.  相似文献   

11.
提出了光滑质点水动力学法,对具有自由面的水流(体)与建筑物相互作用问题进行了数值仿真。应用该法求解了拉格朗日形式的纳维埃—斯托克斯方程,并对方程中的梯度、散度与拉普拉斯等项进行了相应的处理。光滑质点水动力学法具有计算格式简单、易于跟踪自由面和计算大变形问题等优势。最后,给出了水流(体)与建筑物相互作用的两个计算实例,结果表明,计算结果与其他方法给出的数据符合良好。  相似文献   

12.
二维滑坡涌浪的SPH方法数值模拟   总被引:1,自引:3,他引:1  
块体滑坡往往引起自由水面的剧烈变化,研究块体滑坡激发的水面波动一直是水利与海岸工程界非常感兴趣的问题。该文使用SPH方法(光滑质点水动力学)对水下块体下滑引起的自由表面水动力学过程进行了二维数值模拟,并将数值计算结果与试验数据作了对比,计算结果给出了块体下滑过程中,水体表面出现的二次卷破现象,以及在块体上方出现两个方向相反的旋涡,显示了SPH方法对处理块体下滑引起的自由表面大变形问题具有十分优越的特性。通过数值试验,文中还讨论了滑块下滑速度对自由表面破碎和形成的旋涡个数的影响。  相似文献   

13.
In this paper, we simulated the vertical impact of spheres on a water surface using three-dimensional incompressible smoothed particle hydrodynamics(3-D ISPH) method. The sphere motion is taken to be a rigid body motion and it is modeled by ISPH method. The governing equations are discretized and solved numerically using ISPH method. A stabilized incompressible SPH method by relaxing the density invariance condition is adopted. Here, we computed the motions of a rigid body by direct integration of the fluid pressure at the position of each particle on the body surface. The equations of translational and rotational motion were integrated in time domain to update the position of the rigid body at each time step. In this study, we improved the boundary treatment between fluid and fixed solid boundary by using virtual marker technique. In addition, an improved algorithm based on the virtual marker technique for the boundary particles is proposed to treat the moving boundary of the rigid body motion. The force exerted on the moving rigid boundary particles by the surrounding particles, is calculated by the SPH approximation at the virtual marker points. The applicability and efficiency of the current ISPH method are tested by comparison with reference experimental results.  相似文献   

14.
为了精确模拟波浪传播,基于光滑粒子流体动力学及任意拉格朗日欧拉(SPH-ALE)方法建立二维数值波浪水槽,在原SPH方法中引入近似黎曼求解器替代人工黏性项,采用排斥力边界条件防止流体粒子穿透固边界,海绵层内采用指数型衰减函数来消除水槽末端的波浪反射,并对规则波的传播进行数值模拟。结果表明:与采用人工黏性项的原SPH方法相比,SPH-ALE方法能够无衰减地模拟波浪传播,并可有效减小固边界附近的粒子压力振荡。  相似文献   

15.
Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell approach is adopted to track the body surface across a stationary background grid covering the whole computational domain. A cell-centered finite volume method of second-order accuracy in both time and space is developed to solve the flow field in fluid cells, which is also modified accordingly in cut cells and merged cells. In order to compare different turbulence models, the current flow past a fixed circular cylinder at a moderate Reynolds number, Re = 3 900, is tested first. The model is also applied to the simulation of a forced oscillating circular cylinder in the turbulent flow, and the influences of different oscillation amplitudes, frequencies and free stream velocities are discussed. The numerical results indicate that the present numerical model based on the Cartesian cut cell approach is capable of solving the turbulent flow around a body undergoing motions, which is a foundation for the possible future study on wake induced oscillation and vortex induced vibration.  相似文献   

16.
NUMERICAL SIMULATION OF TURBULENT FREE SURFACE FLOW OVER OBSTRUCTION   总被引:3,自引:3,他引:0  
A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.  相似文献   

17.
In view of the fact that the SPH model is easy to handle the flows with the free surface of large deformation, a 2-D flow induced by vertical water entry of a 2-D structure is simulated using the two-phase SPH model. The local pressure of the boundary particles is obtained by pressure of the fluid particles nearby through a modified kernel approximation. To evaluate the accuracy of the method, water entry of a 2-D symmetric wedge with fixed separation point of the free surface on the wedge surface is simulated. The pressure distribution of the wedge at the initial stage agrees well with the analytical results available. Evolution of the free surface and the air flow in the cavity induced by the water entry are obtained. A higher speed air jet is found at the neck of the cavity when the neck of the cavity becomes smaller. For the case of a horizontal cylinder entering the water with an unknown separation point of flow on the model surface, the early stage of the water entry is simulated for the rigid body with different density. Evolution of the free surface deformation of the half-buoyant cylinder and neutrally buoyant cylinder water entry is compared with the experimental data. The effects of the density ratio and Froude number on the pinch-off of the cavity are discussed. It is found that the pinch-off time remains almost constant for different density ratio and Froude number. Meanwhile, for a given Froude number, the dimensionless pinch-off depth and the location of the cylinder at the time of pinch-off increase with the density ratio. Further, for a given density ratio, these two parameters increase with the Froude number and, however, the relative cavity shape appears to be a self-similar shape when Fr ?8.35.  相似文献   

18.
刘慧玲  李海桥 《人民长江》2019,50(7):150-154
受全球气候变暖的影响,由极端天气引发的类似溃坝等问题发生的概率大大增加,深入研究溃坝水流的水动力特性势在必行。在分析光滑粒子流体动力学基本原理的基础上,提出了一种改进的边界处理方法,即将接近壁面的流体视为层流,在耦合动力边界附近引入层流黏性近似边界层理论。采用该方法对溃坝水流进行数值模拟,将SPH数值模拟得到的外轮廓、自由液面高度以及压力与实验结果进行了比较和分析。结果表明:改进的边界处理方法较完整地得到了水流与壁面相互作用而产生的多种复杂的物理现象,其外部轮廓与实验非常吻合;自由表面融合过程中液面间冲击的能量耗散会导致融合后的液面高度存在一些差异;不同监测点处压力随时间的变化基本落在置信区间之内。数值模拟结果与实验结果吻合度较高,验证了改进方案的可靠性和计算结果的准确性。  相似文献   

19.
SPH方法在自由表面流体研究中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
对光滑粒子流体动力学法(SPH方法)的发展背景、理论基础等进行介绍,总结了SPH方法在溃坝、海冰和河冰模拟、船舶流体力学等具有自由表面的流体研究中的应用现状,认为作为一种无网格的纯Lagrange方法,SPH方法较传统的基于网格的模拟方法具有不可比拟的优势。最后分析了SPH方法的缺陷及目前研究中的不足,并就今后的研究方向和发展趋势提出自己的看法。  相似文献   

20.
边界排斥力法是光滑粒子流体动力学(SPH)固壁边界处理的方法之一,但由于缺乏统一的排斥力模型而制约其广泛应用。考虑将近场动力学(Peridynamics,PD)中描述颗粒间接触作用的短程排斥力引入到固壁边界处理模型中,提出一种新型SPH方法边界排斥力模型。通过Couette流和溃坝2个算例验证了排斥力模型的有效性。排斥力表达式简单,参数易于给定,为SPH方法中固壁边界处理提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号