首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Letters》2003,57(24-25):3839-3842
The thermal stability of Si–MCM-41 in different atmosphere (air, O2, NH3, N2, and Ar) has been investigated in the present work; as-synthesized Si–MCM-41 was heat-treated at 800–1030 °C for 6–12 h in the selected atmosphere. Based on absorption–desorption isotherms and low-angle XRD measurement of the treated samples, it was found that the thermal stability varied greatly in different atmosphere. As-synthesized Si–MCM-41 retained mesoporous structure up to 1010 °C in NH3, N2, and Ar environment, but in air and O2 environment, the highest thermal stable temperature of mesoporous structure in Si–MCM-41 was no more than 900 °C.  相似文献   

2.
MCM-41 and Al–MCM-41 has been synthesized using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 °C for 4 h. HPW heteropolyacid supported on the mesoporous were prepared using the incipient wetness method. The characterization of materials was performed by X-ray diffraction, Transmission Electron Microscopy, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning and 27Al MAS NMR. Results showed that the hexagonal structure is obtained in both cases. The Aluminium species are located inside an extra-framework. The impregnation reduces the surface area of the mesoporous materials especially of the Al–MCM-41 suggesting a participation of aluminium during the impregnation. HPW is well dispersed in the mesoporous materials and is located inside the pores interacting with the silanol group of the pores wall. 27Al MAS NMR measurements have showed that the impregnation causes the removal of the non-framework aluminium.  相似文献   

3.
SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 °C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.  相似文献   

4.
Abstract

Three-dimensional cage-like mesoporous FDU-12 materials with large tuneable pore sizes ranging from 9.9 to 15.6 nm were prepared by varying the synthesis temperature from 100 to 200 °C for the aging time of just 2 h using a tri-block copolymer F-127(EO106PO70EO106) as the surfactant and 1,3,5-trimethyl benzene as the swelling agent in an acidic condition. The mesoporous structure and textural features of FDU-12-HX (where H denotes the hydrothermal method and X denotes the synthesis temperature) samples were elucidated and probed using x-ray diffraction, N2 adsorption, 29Si magic angle spinning nuclear magnetic resonance, scanning electron microscopy and transmission electron microscopy. It has been demonstrated that the aging time can be significantly reduced from 72 to 2 h without affecting the structural order of the FDU-12 materials with a simple adjustment of the synthesis temperature from 100 to 200 °C. Among the materials prepared, the samples prepared at 200 °C had the highest pore volume and the largest pore diameter. Lysozyme adsorption experiments were conducted over FDU-12 samples prepared at different temperatures in order to understand their biomolecule adsorption capacity, where the FDU-12-HX samples displayed high adsorption performance of 29 μmol g?1 in spite of shortening the actual synthesis time from 72 to 2 h. Further, the influence of surface area, pore volume and pore diameter on the adsorption capacity of FDU-12-HX samples has been investigated and results are discussed in correlation with the textural parameters of the FDU-12-HX and other mesoporous adsorbents including SBA-15, MCM-41, KIT-5, KIT-6 and CMK-3.  相似文献   

5.
A new series of mesoporous silica spheres containing nanodispersed copper oxides were synthesized in H2O/EtOH/ammonia solution at room temperature. The mesoporous structures were characterised using X-ray powder diffraction and N2 adsorption-desorption techniques. Scanning electron micrograph and transmission electron micrograph revealed that the MCM-41 particles have spherical morphologies. The DTA curve of pure MCM-41 exhibited a sharp single exothermic peak between 290°C and 340°C, while a broad peak with several shoulders in the temperature range between 180°C and 380°C was observed for Cu-MCM-41, indicating the possible complexation of Cu2+ with surfactants adhering to the inner surfaces of the mesopores. Electron paramagnetic resonance spectra of uncalcined samples revealed that Cu2+ ions are in an octahedral or distorted octahedral coordination with nitrogen ligands of the surfactant while in the calcined samples they are coordinated with oxygen of the MCM-41 framework. The redox properties of samples were examined by a temperature-programmed reduction and N2O passivation method. The results indicate that CuO with increasing particle size could be formed in the mesoporous materials with increasing Cu contents, and this decreased the reducibility of the resulting CuO.  相似文献   

6.
Super-microporouos silicon material with high hydrothermal stability denoted as MCM-41-T has been prepared from mesoporous MCM-41 by high temperature treatment. The structural and chemical property of MCM-41-T has been characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, infrared spectroscopy and 29Si MAS NMR. The characteristic results show that Si-OH groups are forced to condense by high temperature treatment, and the pore size of MCM-41-T is around 1.5 nm in the super-microporous range. Compared with the original material MCM-41, the hydrothermal stability of MCM-41-T has been significantly enhanced.  相似文献   

7.
Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, 1H–13C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show that the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.  相似文献   

8.
《Materials Letters》2007,61(14-15):2973-2977
High surface area nanosheet TiO2 with mesoporous structure were synthesized by hydrothermal method at 130 °C for 12 h. The samples were characterized by XRD, SEM, TEM, SAED, and BET surface area. The nanosheet structure was slightly curved and approximately 50–100 nm in width and several nanometers in thickness. The as-synthesized nanosheet TiO2 had an average pore diameter about 3–4 nm. The BET surface area and pore volume of the sample are about 642 m2/g and 0.774 cm3/g, respectively.  相似文献   

9.
《Advanced Powder Technology》2019,30(12):3231-3240
In this study, a composite mesoporous silica material MCM-41 (Mobil composite matter) is impregnated with monoethanolamine (MEA) as primary linear amine, benzylamine (BZA) as primary cyclic amine and N-(2-aminoethyl) ethanolamine (AEEA) as secondary diamine and the effects of amine loading, amine type, CO2 partial pressure and adsorption temperatures on the CO2 adsorption are investigated. The CO2 adsorption performances of MCM-41 and amine impregnated MCM-41 samples are studied up to 1 bar of CO2 partial pressure and the temperature range of 25–60 °C. The amine loadings (% impregnation) are optimized for maximum CO2 uptake. The materials are characterised using N2 adsorption/desorption isotherm, Fourier Transform Infrared (FT-IR) Spectroscopy, Thermogravimetric (TGA) and Elemental (CHNS) analysis. The materials have shown good structural and thermal stability. The MCM-41-40%AEEA, MCM-41-40%BZA and MCM-41-50%MEA samples are exhibited the CO2 adsorption capacity of 2.34 mmol/g (102.98 mg/g), 0.908 mmol/g (39.96 mg/g) and 1.47 mmol/g (64.69 mg/g) respectively. The CO2 uptake of MCM-41-40%AEEA is 3.5 times higher than that of in MCM-41 (0.68 mmol/g) and it is also the highest reported value as di-amine impregnated MCM-41. The results indicated that the adsorption capacities of the materials (MCM-41 and MCM-41-40%AEEA) are decreased with an increase of adsorption temperature in the range of 25–60 °C. The Freundlich, Langmuir, Sips and Toth isotherm models are used to correlate and predict experimental CO2 adsorption data. The Sips and Toth isotherm models are found to be better fitted with the experimental data. The isosteric heat of adsorption of MCM-41 and MCM-41-40%AEEA samples are also calculated from Van’t Hoff plot using iSorbHP-win instrumental analysis software in the experimental temperature range.  相似文献   

10.
Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N2 physisorption. The as-synthesized materials had high surface area of 527 m2 g−1 and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.  相似文献   

11.
Objective: To explore the suitable application of MCM-41 (Mobil Composition of Matter number forty-one)-type and MCM-48-type mesoporous silica in the oral water insoluble drug delivery system.

Methods: Cilostazol (CLT) as a model drug was loaded into synthesized MCM-48 (Mobil Composition of Matter number forty-eight) and commercial MCM-41 by three common methods. The obtained MCM-41, MCM-48 and CLT-loaded samples were characterized by means of nitrogen adsorption, thermogravimetric analysis, ultraviolet-visible spectrophotometry, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and powder X-ray diffractometer.

Results: It was found that solvent evaporation method was preferred according to the drug loading efficiency and the maximum percent cumulative drug dissolution. MCM-48 with 3D cubic pore structure and MCM-41 with 2D long tubular structure are nearly spherical particles in 300–500?nm. Nevertheless, the silica carriers with similar large specific surface areas and concentrating pore size distributions (978.66?m2/g, 3.8?nm for MCM-41 and 1108.04?m2/g, 3.6?nm for MCM-48) exhibited different adsorption behaviors for CLT. The maximum percent cumulative drug release of the two CLT/silica solid dispersion (CLT-MCM-48 and CLT-MCM-41) was 63.41% and 85.78% within 60?min, respectively; while in the subsequent 12?h release experiment, almost 100% cumulative drug release were both obtained. In the pharmacokinetics aspect, the maximum plasma concentrations of CLT-MCM-48 reached 3.63?mg/L by 0.92?h. The AUC0–∞ values of the CLT-MCM-41 and CLT-MCM-48 were 1.14-fold and 1.73-fold, respectively, compared with the commercial preparation.

Conclusion: Our findings suggest that MCM-41-type and MCM-48-type mesoporous silica have great promise as solid dispersion carriers for sustained and immediate release separately.  相似文献   

12.
Nanoporous silicates MCM-41 have been prepared using different surfactants such as cetyltrimethylammonium bromide (C16TAB) and dodecyltrimethylammonium bromide (C12TAB) as template. The adsorbents are characterized using powder x-ray diffraction, nitrogen adsorption-desorption isotherm data, scanning electron microscopy, and transmission electron microscopy. The thorium sorption was studied as a function of shaking time, pH, initial concentration, and temperature. The sorption of thorium at the determined optimum conditions follows Langmuir and Freundlich isotherms. The results show that the nanoporous MCM-41 synthesized by C12TAB has more adsorption capacity than the MCM-41 synthesized by C16TAB (77.6 µmol · g?1 vs. 52.1 µmol · g?1) at 25°C. Th(IV) adsorption onto nanoporous adsorbents was very fast process and therefore, this adsorbent is suitable for column separation. Thermodynamic parameters such as ΔH°, ΔS° and ΔG° were found to be 47.76 KJ · mol?1, 196.21 J · mol?1 · K?1, and 19.00 KJ · mol?1, respectively (at 298 K). The positive value ΔH° suggested the endothermic nature of adsorption and negative ΔG° indicates the feasibility and spontaneity of the adsorption process.  相似文献   

13.
In this study, mesoporous silica nanoparticles (MSNs) composed of MCM-41 were synthesized and modified with amine groups (i.e., NH2) to form NH2/MCM-41, which was loaded with curcumin (CUR) to form CUR@NH2/MCM-41 to create an efficient carriers in drug delivery systems (DDSs). The three samples (i.e., pure MCM-41, NH2/MCM-41, and CUR@NH2/MCM-41) were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transition electron microscopy (TEM), and a thermogravimetric analyzer (TGA). The study investigated the effect of the carrier dose, CUR concentration, pH, and contact time on the drug loading efficiency (DLE%) by adsorption. The best DLE% for MCM-41 and NH2/MCM-41 was found to be 15.78 and 80%, respectively. This data demonstrated that the Langmuir isotherm had a greater correlation coefficient (R2) of 0.9840 for MCM-41 and 0.9666 for NH2/MCM-41 than the Freundlich and Temkin isotherm models. A pseudo-second-order kinetic model seems to fit well with R2 = 0.9741 for MCM-41 and R2 = 0.9977 for NH2/MCM-41. A phosphate buffer solution (PBS) with a pH of 7.4 was utilized to study CUR release behavior. As a result, the full release after 72 h was found to have a maximum of 74.1% and 29.95% for pure MCM-41 and NH2/MCM-41, respectively. The first-order, Weibull, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic release models were applied to releasing CUR from CUR@MCM-41 and CUR@NH2/MCM-41. The Weibull kinetic model fit well, with R2 = 0.944 and 0.96912 for pure MCM-41 and NH2/MCM-41, respectively.  相似文献   

14.
TiO2/Al-MCM-41 mesoporous materials were prepared via sol-gel method by loading titania onto Al-MCM-41 mesoporous molecular sieve by hydrothermal treatment from coal-series kaolin as raw material. The TiO2/Al-MCM-41 mesoporous materials were characterized by XRD, FT-IR, HRTEM, N2 adsorption-desorption and the photocatalytic degradation of methyl orange solution under visible light irradiation. The results showed that the TiO2/Al-MCM-41 mesoporous materials possessed a high surface area of 369.9–751.3 m2/g and a homogeneous pore diameters of 2.3–2.8 nm. The titania crystalline phase was anatase, and the particles size of TiO2 increased with TiO2 content. The Al-MCM-41 mesoporous materials exhibited excellent photodegradation activity under visible-light irradiation for methyl orange.  相似文献   

15.
TiO2–SBA-15 complex materials with highly ordered mesostructures have been prepared by a one-step hydrothermal synthesis method of titanium tetraisopropoxide (TTIP) and tetraethoxysilane (TEOS) in an acidic solution using surfactant P123 (EO20PO70EO20) as structure-directing reagent. The prepared materials were characterized by transmission electron microscopy (TEM), small-angle X-ray diffraction patterns (SAXRD), Fourier transformed infrared spectroscopy (FT-IR) and N2 adsorption–desorption experiments. The resulting TiO2–SBA-15 complex materials showed highly ordered mesoporous structure with uniform pore sizes of 5.95 and 8.24 nm, high specific surface areas SBET of 689 m2 g? 1 and 347 m2 g? 1 at different hydrothermal temperatures (100 °C and 130 °C). The photocatalytic activity of these TiO2–SBA-15 mesoporous materials has been studied by 4-chlorophenol decomposition under UV light irradiation. The TiO2–SBA-15 mesoporous materials prepared at the TiO2:SiO2 mass ratios of 25:75, 40:60 and 50:50 showed higher photocatalytic activity than that prepared at the TiO2:SiO2 mass ratio of 75:25.  相似文献   

16.
We report the synthesis of mesoporous SnO2 nanoparticles by a microwave assisted hydrothermal process and their application as a gas sensor. The synthesized materials were characterized by transmission electron microscopy, X-ray diffraction technique, X-ray photoelectron spectroscopy, and Photoluminescence spectroscopy. As the results, we found that as-synthesized SnO2 was synthetic Cassiterite with tetragonal structure and spherical in shape with the primary crystallite size of 6–8 nm, and the SnO2 embedded material was mesoporous with average pore sizes of ≈15 nm. Moreover, this material showed excellent thermal stability from 80 to 800 °C and its crystal structure after heat treatment was preserved even at ultrahigh temperature of 800 °C. We demonstrated that this material could be used for detection of the ethanol gas because of its stability and nanoscale size at high temperature. Additionally our investigations also suggest that the processed materials can be used for the photocatalytic oxidation of ethanol. These results propose the potential application of the material for a sense and shoot kind of approach for indoor air purification in pharmaceutical and fermentation monitoring and vehicular control through breath analyzer.  相似文献   

17.
Ceria doped MCM-41 materials were synthesized by surfactant-assisted hydrothermal and wet impregnation methods. All the obtained Ce-MCM-41 materials were characterized by N2 physical adsorption, X-ray diffraction (XRD), diffuse reflectance UV–visible spectroscopy (DRUV–vis), infrared spectroscopy (IR), solid-state cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy (CP/MAS-NMR), and transmission electron microscopy (TEM). The catalytic properties were evaluated in CO oxidation under atmospheric pressure and various temperatures. The results showed that in the materials synthesized by hydrothermal method, most of Ce ions were well incorporated in the tetrahedral coordinated sites into the framework of the MCM-41 as Si/Ce molar ratio is 30 and 50. High cerium content may lead to mesostructure partial collapsing and ceria particles segregation. For CO oxidation, the catalytic activity of Ce-MCM-41 synthesized by hydrothermal method was significantly greater than that of the materials prepared by impregnation route. Over the Ce-MCM-41 materials prepared via hydrothermal technique, 100% CO conversion was achieved at 504, 514 and 528 K, respectively, as the Si/Ce molar ratio decreased from 50 to 30 and 10. For the first time, we found an interesting correlation of Q3 species relative area in the 29Si CP/MAS-NMR spectra of the Ce-MCM-41materials with the reaction rates of CO oxidation, which indicates that both surface hydroxyls and tetrahedral-coordinated Ce4+ ions in the MCM-41 take important roles in the CO oxidation.  相似文献   

18.
通过水热合成法制备MCM-41型介孔分子筛,采用浸渍法负载磷钨酸于MCM-41介孔分子筛中,煅烧得到新型HPW/MCM-41固载催化剂。利用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TG)和扫描电镜(SEM)对固载催化剂进行表征;考察催化剂对棉纤维催化降解反应的性能。结果表明,新型HPW/MCM-41固载催化剂即持有了磷钨酸的Keggin结构,同时又保持了分子筛的完整介孔结构,具有催化、筛分双重性能。棉纤维催化降解反应数据显示,磷钨酸负载量、反应温度、催化剂用量、液固比及停留时间均影响HPW/MCM-41降解纤维素的性能。在单因素实验最佳反应条件下,棉纤维素降解产物的分子量分布较为均匀,降解产物的产率较优。  相似文献   

19.
A very simple approach with yeast cells as a biotemplate was proposed to synthesize a mesoporous hybrid Fe2O3 photocatalyst. The mesoporous structure of the resultant samples was characterized by BET, N2 adsorption–desorption isotherms (NADI) and transmission electron microscopy (TEM). The chemical bond linkages in hybrid Fe2O3 samples were confirmed by Fourier transform infrared spectroscopy (FT–IR). The catalytic activities of mesoporous hybrid Fe2O3 on degradation of methyl orange were investigated under UV-light irradiation. The hybrid Fe2O3 (yeast cell amount is 0.6 g) samples dried at 80 °C and calcined at 300 °C exhibit high surface area and photocatalytic activity.  相似文献   

20.
Novel wet-chemical methods of synthesis have been adopted to synthesize nano-crystalline CeO2 and Gd-substituted compositions aiming to explore an efficient oxide ion conducting solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Nano-crystalline CeO2 powders were synthesized by combustion method using redox mixture of cerric ammonium nitrate or cerium nitrate and maleic acid or 1,3-dimethylurea and compared with high surface area CeO2 powders prepared by hydrothermal technique with microwave precipitated precursor from aqueous solutions of (NH4)2Ce(NO3)6 and urea. The grain size achieved by the hydrothermal technique is ∼7 nm which is smaller than that of commercial nano CeO2 powders. Conventional or microwave sintering was used to prepare dense Ce0.8Gd0.2O1.9 pellets from the ceria powders made of redox mixture of cerium nitrate, 1,3-dimethylurea (DMU) and Gd2O3 as the starting ingredients. The samples were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and ac impedance spectroscopy. The ionic conductivity measured for the pellet sintered at 1400 °C is 1 × 10−2 and 2.4 × 10−2 S/cm at 700 °C and 800 °C respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号