首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subject to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.  相似文献   

2.
The guaranteed cost distributed fuzzy (GCDF) observer‐based control design is proposed for a class of nonlinear spatially distributed processes described by first‐order hyperbolic partial differential equations (PDEs). Initially, a T–S fuzzy hyperbolic PDE model is proposed to accurately represent the nonlinear PDE system. Then, based on the fuzzy PDE model, the GCDF observer‐based control design is developed in terms of a set of space‐dependent linear matrix inequalities. In the proposed control scheme, a distributed fuzzy observer is used to estimate the state of the PDE system. The designed fuzzy controller can not only ensure the exponential stability of the closed‐loop PDE system but also provide an upper bound of quadratic cost function. Moreover, a suboptimal fuzzy control design is addressed in the sense of minimizing an upper bound of the cost function. The finite difference method in space and the existing linear matrix inequality optimization techniques are used to approximately solve the suboptimal control design problem. Finally, the proposed design method is applied to the control of a nonisothermal plug‐flow reactor. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2366–2378, 2013  相似文献   

3.
《Computers & Chemical Engineering》2006,30(11-12):2335-2345
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subject to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.  相似文献   

4.
The model predictive controller (MPC) design is developed for a tubular chemical reactor, considering a second-order hyperbolic partial differential equation as the model of the transport-reaction process with boundary actuation. Without loss of generality, closed–closed boundary conditions and relaxed total flux are assumed. At the same time, the model is discretized in time by the Cayley–Tustin method, and, under the assumption that only the reactor's output is measurable, the observer design for the state reconstruction is addressed and integrated with the MPC design. The Luenberger observer gain is obtained by solving the operator Ricatti equation in the discrete-time setting, while the MPC accounts for constrained and optimal control. The simulations show that the output-based MPC design stabilizes the system under the input and output constraints satisfaction. In addition, to address the models' disparities, the results for both parabolic and hyperbolic equations are presented and discussed.  相似文献   

5.
Observer and optimal boundary control design for the objective of output tracking of a linear distributed parameter system given by a two‐dimensional (2‐D) parabolic partial differential equation with time‐varying domain is realized in this work. The transformation of boundary actuation to distributed control setting allows to represent the system's model in a standard evolutionary form. By exploring dynamical model evolution and generating data, a set of time‐varying empirical eigenfunctions that capture the dominant dynamics of the distributed system is found. This basis is used in Galerkin's method to accurately represent the distributed system as a finite‐dimensional plant in terms of a linear time‐varying system. This reduced‐order model enables synthesis of a linear optimal output tracking controller, as well as design of a state observer. Finally, numerical results are prepared for the optimal output tracking of a 2‐D model of the temperature distribution in Czochralski crystal growth process which has nontrivial geometry. © 2014 American Institute of Chemical Engineers AIChE J, 61: 494–502, 2015  相似文献   

6.
In this article, the problem of observer design in linear multi‐output systems with asynchronous sampling is addressed. The proposed multi‐rate observer is based on a continuous‐time Luenberger observer design coupled with an inter‐sample predictor for each sampled measurement, which generates an estimate of the output in between consecutive measurements. The sampling times are not necessarily uniformly spaced, but there exists a maximum sampling period among all the sensors. Sufficient and explicit conditions are derived to guarantee exponential stability of the multi‐rate observer. The proposed framework of multi‐rate observer design is examined through a mathematical example and a gas‐phase polyethylene reactor. In the latter case, the amount of active catalyst sites is estimated, with a convergence rate that is comparable to the case of continuous measurements. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3384–3394, 2017  相似文献   

7.
A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3818–3831, 2017  相似文献   

8.
The accuracy of the phenomenological curing and rheological models are strongly related to the estimated start parameters and selected regression algorithms. Considering the versatile methods for model start parameter estimation (model‐free vs. model‐fitting, dynamic vs. isothermal) and regression analysis algorithm (linear vs. nonlinear, single‐target vs. multi‐target), this paper investigates the theoretical basis and influence of these aspects on the model development process and model quality. The curing kinetics is modelled by model‐free and model‐fitting start parameters and different regression algorithms, followed by cross model validation at the final. The results showed that the different parameter estimation methods and evaluation algorithms have a remarkable influence on the final model parameters and its quality. The study shows the correlation between the different aspects and provides a basis for better selection of model parameter evaluation methods and regression algorithms for model development with improved quality and accuracy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45137.  相似文献   

9.
We show that most steady‐state models of chemical reactors and reacting flows in which convection effects are dominant and diffusion/conduction is neglected in the flow direction but included in the transverse directions, may change from parabolic type with a unique solution to index infinity differential‐algebraic equation (DAE) type with an infinite number of steady‐state solutions depending on the values of the reaction parameters. When a model is of index infinity, standard numerical methods may find only one of the solutions corresponding to latest possible ignition. We present complete bifurcation analysis of these models, a method for finding all solutions, determine the stability and, for some simpler cases, the domain of initial conditions attracted to these states. We also demonstrate that the various steady‐state solutions of the DAE systems are best found by integrating the transient hyperbolic versions of the models with appropriately selected capacitance terms and initial conditions. © 2016 American Institute of Chemical Engineers AIChE J, 63: 295–305, 2017  相似文献   

10.
The problem of feedback control of spatially distributed processes described by highly dissipative partial differential equations (PDEs) is considered. Typically, this problem is addressed through model reduction, where finite dimensional approximations to the original infinite dimensional PDE system are derived and used for controller design. The key step in this approach is the computation of basis functions that are subsequently utilized to obtain finite dimensional ordinary differential equation (ODE) models using the method of weighted residuals. A common approach to this task is the Karhunen‐Loève expansion combined with the method of snapshots. To circumvent the issue of a priori availability of a sufficiently large ensemble of PDE solution data, the focus is on the recursive computation of eigenfunctions as additional data from the process becomes available. Initially, an ensemble of eigenfunctions is constructed based on a relatively small number of snapshots, and the covariance matrix is computed. The dominant eigenspace of this matrix is then utilized to compute the empirical eigenfunctions required for model reduction. This dominant eigenspace is recomputed with the addition of each snapshot with possible increase or decrease in its dimensionality; due to its small dimensionality the computational burden is relatively small. The proposed approach is applied to representative examples of dissipative PDEs, with both linear and nonlinear spatial differential operators, to demonstrate its effectiveness of the proposed methodology. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

11.
12.
The thermal regulation problem for a lithium ion (Li‐ion) battery with boundary control actuation is considered. The model of the transient temperature dynamics of the battery is given by a nonhomogeneous parabolic partial differential equation (PDE) on a two‐dimensional spatial domain which accounts for the time‐varying heat generation during the battery discharge cycle. The spatial domain is given as a disk with radial and angular coordinates which captures the nonradially symmetric heat‐transfer phenomena due to the application of the control input along a portion of the spatial domain boundary. The Li‐ion battery model is formulated within an appropriately defined infinite‐dimensional function space setting which is suitable for spectral controller synthesis. The key challenges in the output feedback model‐based controller design addressed in this work are: the dependence of the state on time‐varying system parameters, the restriction of the input along a portion of the battery domain boundary, the observer‐based optimal boundary control design where the separation principle is utilized to demonstrate the stability of the closed loop system, and the realization of the outback feedback control problem based on state measurement and interpolation of the temperature field. Numerical results for simulation case studies are presented. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3782–3796, 2013  相似文献   

13.
Approximate dynamic programming (ADP) is a model based control technique suitable for nonlinear systems. Application of ADP to distributed parameter systems (DPS) which are described by partial differential equations is a computationally intensive task. This problem is addressed in literature by the use of reduced order models which capture the essential dynamics of the system. Order reduction of DPS described by hyperbolic PDEs is a difficult task as such systems exhibit modes of nearly equal energy. The focus of this contribution is ADP based control of systems described by hyperbolic PDEs using reduced order models. Method of characteristics (MOC) is used to obtain reduced order models. This reduced order model is then used in ADP based control for solving the set-point tracking problem. Two case studies involving single and double characteristics are studied. Open loop simulations demonstrate the effectiveness of MOC in reducing the order and the closed loop simulations with ADP based controller indicate the advantage of using these reduced order models.  相似文献   

14.
The optimal design and operations of water supply chain networks for shale gas production is addressed. A mixed‐integer linear fractional programming (MILFP) model is developed with the objective to maximize profit per unit freshwater consumption, such that both economic performance and water‐use efficiency are optimized. The model simultaneously accounts for the design and operational decisions for freshwater source selection, multiple transportation modes, and water management options. Water management options include disposal, commercial centralized wastewater treatment, and onsite treatment (filtration, lime softening, thermal distillation). To globally optimize the resulting MILFP problem efficiently, three tailored solution algorithms are presented: a parametric approach, a reformulation‐linearization method, and a novel Branch‐and‐Bound and Charnes–Cooper transformation method. The proposed models and algorithms are illustrated through two case studies based on Marcellus shale play, in which onsite treatment shows its superiority in improving freshwater conservancy, maintaining a stable water flow, and reducing transportation burden. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1184–1208, 2015  相似文献   

15.
In industry, it may be difficult in many applications to obtain a first‐principles model of the process, in which case a linear empirical model constructed using process data may be used in the design of a feedback controller. However, linear empirical models may not capture the nonlinear dynamics over a wide region of state‐space and may also perform poorly when significant plant variations and disturbances occur. In the present work, an error‐triggered on‐line model identification approach is introduced for closed‐loop systems under model‐based feedback control strategies. The linear models are re‐identified on‐line when significant prediction errors occur. A moving horizon error detector is used to quantify the model accuracy and to trigger the model re‐identification on‐line when necessary. The proposed approach is demonstrated through two chemical process examples using a model‐based feedback control strategy termed Lyapunov‐based economic model predictive control (LEMPC). The chemical process examples illustrate that the proposed error‐triggered on‐line model identification strategy can be used to obtain more accurate state predictions to improve process economics while maintaining closed‐loop stability of the process under LEMPC. © 2016 American Institute of Chemical Engineers AIChE J, 63: 949–966, 2017  相似文献   

16.
This work explores the design of a model predictive controller of the continuous pulp digester process consisting of the co-current zone and counter-current zone modeled by a set of nonlinear coupled hyperbolic partial differential equations (PDEs). The distributed parameter system of interest is not spectral, and slow–fast dynamic separation does not hold. To address this challenge, the nonlinear continuous-time model is linearized and discretized in time utilizing the Cayley–Tustin discretization framework, which ensures system theoretic properties and structure preservation without spatial discretization or model reduction. The discrete model is used in the full state model predictive controller design, which is augmented by the Luenberger observer design to achieve the output constrained regulation. Finally, a numerical example is provided to demonstrate the feasibility and applicability of the proposed controller designs.  相似文献   

17.
A realistic pipeline modeled by a nonlinear coupled first-order hyperbolic partial differential equations (PDEs) system is studied for the long transportation pipeline leak detection and localization. Based on the so-called water hammer equation, a linear distributed parameter system is obtained by linearization. The structure and energy preserving time discretization scheme (Cayley–Tustin) is used to realize a discrete infinite-dimensional hyperbolic PDEs system without spatial approximation or model order reduction. In order to reconstruct pressure and mass flow velocity evolution with limited measurements, a discrete-time Luenberger observer is designed by solving the operator Riccati equation. Based on this distributed observer system, data on different normal and leakage conditions (various leak amounts and positions) are generated and fed to train a support vector machine model for leak detection, amount, and position estimation. Finally, the leak detection, amount estimation, and localization effectiveness of the developed method are proved by a set of simulations. © 2019 American Institute of Chemical Engineers AIChE J, 65: e16532 2019  相似文献   

18.
Counterflow reactor models fall into three classes of partial differential equations: hyperbolic, parabolic, and mixed hyperbolic-parabolic. These have been analyzed to determine the behavior of their eigenvalues and their modal contributions. Using an asymptotic analytical technique (WKB theory), hyperbolic p.d.e. systems and mixed p.d.e. systems with characteristics similar to hyperbolic systems were found to have a “defective” internal structure, making them generally undesirable for modeling or control applications requiring low-order models. Parabolic systems, or mixed systems with characteristics similar to parabolic systems, were found to be “well-behaved”. Hence, where it is possible to choose the type of model to apply to a specific reactor, the choice of the parabolic form is strongly suggested to mitigate potential structural problems.  相似文献   

19.
The boundary feedback regulator design for heat exchangers with delayed feedback is developed. Counter-flow/parallel-flow heat exchanger systems described by a pair of coupled transport hyperbolic partial differential equations (PDEs) with delayed boundary feedback loop modeled by the boundary time lag are considered. The coupled transport hyperbolic PDEs and boundary delay by application of boundary transformation are transformed in the corresponding linear infinite-dimensional system utilized in the regulator design. The regulator design initially addresses a full state feedback controller realization augmented by the observer design to achieve simultaneously output exponential stabilization as well as tracking and disturbance rejection of polynomial and/or harmonic type of reference signals. The simulations studies demonstrate the proposed design for counter-flow and parallel-flow heat exchangers, two common configurations present in industrial practice.  相似文献   

20.
A novel methodology for the order‐reduction of parabolic partial differential equation (PDE) systems with time‐varying domain is explored. In this method, a mapping functional is obtained, which relates the time‐evolution of the solution of a parabolic PDE with time‐varying domain to a fixed reference domain, while preserving space invariant properties of the initial solution ensemble. Subsequently, the Karhunen–Loève decomposition is applied to the solution ensemble on fixed spatial domain resulting in a set of optimal eigenfunctions. Further, the low dimensional set of empirical eigenfunctions is mapped on the original time‐varying domain by an appropriate mapping, resulting in the basis for the construction of the reduced‐order model of the parabolic PDE system with time‐varying domain. This methodology is used in three representative cases, one‐ and two‐dimensional (1‐D and 2‐D) models of nonlinear reaction‐diffusion systems with analytically defined domain evolutions, and the 2‐D model of the Czochralski crystal growth process with nontrivial geometry. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4142–4150, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号