首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

2.
The enzyme‐based contained liquid membrane reactor to capture CO2 from the closed spaces is a very complicated process with large numbers of interdependent variables. A theoretical and experimental analysis of facilitated transport of CO2 across a hollow fiber membrane reactor filled with immobilized carbonic anhydrase (CA) by nanocomposite hydrogel was presented. CO2 concentration profiles in the feed gas phase and the membrane wall were achieved by numeric simulation. The effects of CO2 concentration, CA concentration, and flow rate of feed gas on CO2 removal performance were studied in detail, and the model solution agrees with the experimental data with a maximum deviation of up to 18.7%. Moreover, the effect of CO2 concentration on the required membrane areas for the same CO2 removal target (1 kg/day) was also investigated. This could provide real‐world data and scientific basis for future development toward a final efficient CO2 removal device. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

3.
Predicting the gas permeability of ionic liquid‐polymeric membranes (ILPM) is of great importance for the design of efficient gas separation membrane materials. The available models for the prediction of CO2 gas permeability through ionic liquid‐polymeric membranes were analyzed using the literature data. Maxwell model was selected for modification due to relatively accurate prediction capability. The Maxwell model was modified for ionic liquid‐polymeric membranes by incorporating model parameter k for the effectiveness of volume fraction of dispersed phase. The established methodology was tested for different ionic liquid‐polymeric membrane systems for validation. A satisfactory agreement was observed for predicted and experimental permeability by using the current approach. This method can be used for the prediction of CO2 gas permeability through ionic liquid‐polymeric membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44761.  相似文献   

4.
The internal structure design of membrane module is very important for gas removal performance using membrane contactor via physical absorption. In this study, a novel membrane contactor developed by weaving polytetrafluoroethylene (PTFE) hollow fibers was applied to remove CO2 from 60% N2 + 40% CO2 mixture (with CO2 concentration similar to that of biogas) at elevated pressure (0.8 MPa) using water as absorbent. Compared with the conventional module with randomly packed straight fibers, the module with woven PTFE fibers exhibited much better CO2 absorption performance. The weaving configuration facilitated the meandering flow or Dean vortices and renewing speed of water around hollow fibers. Meanwhile, the undesired influences such as channeling and bypassing were also eliminated. Consequently, the mass transfer of liquid phase was greatly improved and the CO2 removal efficiency was significantly enhanced. The effects of operation pressure, module arrangement, feed gas, and water flow rate on CO2 removal were systematically investigated as well. The overall mass‐transfer coefficient (KOV) varied from 1.96 × 10?5 to 4.39 × 10?5 m/s (the volumetric mass‐transfer coefficient KLa = 0.034–0.075 s?1) under the experimental conditions. The CO2 removal performance of novel woven fiber membrane contactor matched well with the simulation results. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2135–2145, 2018  相似文献   

5.
The chemical absorption of CO2 into a monoethanolamine solvent is currently the most widely accepted commercial approach to carbon dioxide capture. However, the subsequent desorption of CO2 from the solvents is extremely energy intensive. Alternative solvents are more energy efficient, but their slow reaction kinetics in the CO2 absorption step limits application. The use of a carbonic anhydrase (CA) enzyme as a reaction promoter can potentially overcome this obstacle. Native, engineered and artificial CA enzymes have been investigated for this application. Immobilization of the enzyme within the gas absorber or in a membrane format can increase enzyme stability and avoid thermal denaturation in the stripper. However, immobilization is only effective if the mass transfer of carbon dioxide through the liquid phase to reach the immobilization substrate does not become rate controlling. Further research should also consider the process economics of large‐scale enzyme production and the long‐term performance of the enzyme under real flue gas conditions. © 2014 Society of Chemical Industry  相似文献   

6.
This article focused on segregation of low concentration CO2 from CO2/N2 mixture gas by implementing high‐performance facilitated transport mixed matrix membranes (MMMs) in large‐scale carbon capture techniques. These advanced, novel CO2‐selective membrane materials were developed by embedding silica nanoparticles at different loading into the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) matrix using solution casting. In situ sol–gel technique was applied for the synthesis of the hydrophilic SiO2 nanoparticles. The compatibility of filler‐polymer matrix plays a crucial role in the optimization of the membrane performance. The dispersion and interaction of the filler into the polymer matrix were confirmed by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, contact angle tests, and swelling ratio analysis. Field emission scanning electron microscopy analysis of the synthesized MMMs established the homogeneous dispersion of the fillers in the polymer matrix. Owing to its good compatibility with PVA/PEG matrix, the inclusion of fillers significantly increased the overall separation efficiency of CO2 within the membrane. Compared to pristine PVA/PEG membrane, PVA/PEG/silica membrane with 3.34 wt % silica loading showed pronounced improvement in its gas separation properties with 78% augmentation in CO2 permeability and 45% enhancement in CO2/N2 selectivity for fixed conditions pertaining to sweep side water flow rate of 0.04 mL/min and 100 °C temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46481.  相似文献   

7.
Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO2 from CH4, for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J, 63: 1989–2006, 2017  相似文献   

8.
CO2 capture via an oxy‐fuel route through the U‐shaped (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) hollow fiber membrane with 100% CH4 conversion and 100% CO2 selectivity for 450 h has been explored for the first time. X‐ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy characterizations of the spent hollow fiber membrane have also been investigated. All these results indicate that PLNCG hollow fiber membrane shows excellent reaction performance and good stability under oxy‐fuel reaction conditions, which will be a potential rounte for reducing CO2 emissions worldwide. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3856–3862, 2013  相似文献   

9.
The mass transfer performance of CO2 absorption into blended N,N‐diethylethanolamine (DEEA)/ethanolamine (MEA) solutions was investigated using a lab‐scale absorber (H = 1.28 m, D = 28 mm) packed with Dixon ring random packing. The mass transfer coefficient KGav, the unit volume absorption rate Φ, outlet concentration of CO2 (yCO2), and the bottom temperature Tbot of CO2 in aqueous DEEA/MEA solutions were determined over the feed temperature range of 298.15–323.15 K, lean CO2 loading of 0.15–0.31 mol/mol, over a wide range of liquid flow rate of 3.90–9.75 m3/m2‐h, by using inert gas flow rate of 26.11–39.17 kmol/m2‐h and 6–18 kPa CO2 partial pressure. The results show that liquid feed temperature, lean CO2 loading, liquid flow rate, and CO2 partial pressure had significant effect on those parameters. However, the inert gas flow rate had little effect. To allow the mass transfer data to be really utilized, KGav and yout correlations for the prediction of mass transfer performance were proposed and discussed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3048–3057, 2017  相似文献   

10.
Graphene oxide (GO)‐polyether block amide (PEBA) mixed matrix membranes were fabricated and the effects of GO lateral size on membranes morphologies, microstructures, physicochemical properties, and gas separation performances were systematically investigated. By varying the GO lateral sizes (100–200 nm, 1–2 μm, and 5–10 μm), the polymer chains mobility, as well as the length of the gas channels could be effectively manipulated. Among the as‐prepared membranes, a GO‐PEBA mixed matrix membrane (GO‐M‐PEBA) containing 0.1 wt % medium‐lateral sized (1–2 μm) GO sheets showed the highest CO2 permeation performance (CO2 permeability of 110 Barrer and CO2/N2 mixed gas selectivity of 80), which transcends the Robeson upper bound. Also, this GO‐PEBA mixed matrix membrane exhibited high stability during long‐term operation testing. Optimized by GO lateral size, the developed GO‐PEBA mixed matrix membrane shows promising potential for industrial implementation of efficient CO2 capture. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2843–2852, 2016  相似文献   

11.
We herein report an optimal modulated hydrothermal (MHT) synthesis of a highly stable zirconium metal‐organic framework (MOF) with an optimum aperture size of 3.93 Å that is favorable for CO2 adsorption. It exhibits excellent CO2 uptake capacities of 2.50 and 5.63 mmol g?1 under 0.15 and 1 bar at 298 K, respectively, which are among the highest of all the pristine water‐stable MOFs reported so far. In addition, we have designed a lab‐scale breakthrough set‐up to study its CO2 capture performance under both dry and wet conditions. The velocity at the exit of breakthrough column for mass balance accuracy is carefully measured using argon with a fixed flow rate as the internal reference. Other factors that may affect the breakthrough dynamics, such as pressure drop and its impact on the roll‐up of the weaker component have been studied in details. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4103–4114, 2017  相似文献   

12.
Composite layer containing postmodified MIL‐53 (P‐MIL‐53) was exploited to be coated on as‐fabricated asymmetric hollow fiber membrane for improving gas separation performance. The morphology and pore size distribution of P‐MIL‐53 particles were characterized by SEM and N2 adsorption isotherm. The EDX mapping and FTIR spectra were performed to confirm the presence of P‐MIL‐53 deposited on the outer surface of hollow fiber membranes. The results of pure gas permeation measurement indicated that incorporation of P‐MIL‐53 particles in coating layer could improve permeation properties of hollow fiber membranes. By varying coating times and P‐MIL‐53 content, the membrane coated with PDMS/15%P‐MIL‐53 composite by three times achieved best performance. Compared to pure PDMS coated membrane, CO2 permeance was enhanced from 29.96 GPU to 40.24 GPU and ideal selectivity of CO2/N2 and CO2/CH4 also increased from 23.28 and 26.95 to 28.08 and 32.03, respectively. The gas transport through composite membrane was governed by solution‐diffusion mechanism and CO2 preferential adsorption of P‐MIL‐53 contributed to considerable increase of CO2 solubility resulting in accelerated permeation rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44999.  相似文献   

13.
In this article, tert‐butylcalix [4]arene (CA)‐filled poly dimethylsiloxane (PDMS) membranes (CA‐f‐PDMS) were prepared for pervaporative removal of benzene from aqueous solution. In comparison with unfilled PDMS membrane, CA‐f‐PDMS membranes showed higher permselectivity towards benzene due to the inclusion interaction between benzene and CA. The separation factor increased from 3275 to 5604 when the CA content varies from 0 to 3 wt % in the PDMS membrane. On the other hand, the normalized permeation rate of benzene (NPRb) decreased with the increase of the degree of crystallization of the membranes due to the crystallinity of CA. The membrane with 1 wt % CA content had the highest degree of crystallization and thus the lowest NPRb, whereas the membrane with 3 wt % CA content was the opposite. Furthermore, the addition of CA increased the elastic modulus of membranes slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 90–100, 2006  相似文献   

14.
Amino acid ionic liquids (AAILs) are chemical solvents with high reactivity to CO2. However, they suffer from drastic increase in viscosity on the reaction with CO2, which significantly limits their application in the industrial capture of CO2. In this work, 1‐ethyl‐3‐methylimidazolium acetate ([emim][Ac]) which also exhibits chemical affinity to CO2 but low viscosity, and its viscosity does not increase drastically after CO2 absorption, was proposed as the diluent for AAILs to fabricate hybrid materials. The AAIL+[emim][Ac] hybrids were found to display enhanced kinetics for CO2 absorption, and their viscosity increase after CO2 absorption are much less significant than pure AAILs. More importantly, owing to the fact that [emim][Ac] itself can absorb large amount of CO2, the AAIL+[emim][Ac] hybrids still have high absolute capacities of CO2. Such hybrid materials consisting of a chemical solvent plus another chemical solvent are believed to be a class of effective absorbents for CO2 capture. © 2017 American Institute of Chemical Engineers AIChE J, 64: 632–639, 2018  相似文献   

15.
1H,1H,2H,2H‐Perfluorooctyl trichlorosilane (PFTS) was used to modify TiO2 nanoparticles, and hydrophobic PFTS–TiO2 nanoparticles were obtained by an ultrasonic reaction method. The PFTS–TiO2 surface morphological and hydrophobic properties were analyzed with scanning electron microscopy (SEM), Fourier transform infrared spectrometry, and contact angle (CA) testing. Then, the poly(p‐phenylene benzobisoxazole) fabric–phenolic composite filled with PFTS–TiO2 as a lubricant additive was fabricated by a dip‐coating process. The tribological properties of the composite were investigated, and the wear surface morphology was observed by SEM. The experimental results show that the water CA of the composite filled with PFTS–TiO2 was 158°, and the composite containing 4 wt % PFTS–TiO2 exhibited excellent antifriction and abrasion resistance. The hydrophobic surface of the composite showed excellent durable performance with a static water CA of 126.7° after abrasion. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45077.  相似文献   

16.
The novel fixed‐site‐carrier (FSC) membranes were prepared by coating carbon nanotubes reinforced polyvinylamine/polyvinyl alcohol selective layer on top of ultrafiltration polysulfone support. Small pilot‐scale modules with membrane area of 110–330 cm2 were tested with high pressure permeation rig. The prepared hybrid FSC membranes show high CO2 permeance of 0.084–0.218 m3 (STP)/(m2 h bar) with CO2/CH4 selectivity of 17.9–34.7 at different feed pressures up to 40 bar for a 10% CO2 feed gas. Operating parameters of feed pressure, flow rate, and CO2 concentration were found to significantly influence membrane performance. HYSYS simulation integrated with ChemBrane and cost estimation was conducted to evaluate techno‐economic feasibility of a membrane process for natural gas (NG) sweetening. Simulation results indicated that the developed FSC membranes could be a promising candidate for CO2 removal from low CO2 concentration (10%) NGs with a low NG sweetening cost of 5.73E?3 $/Nm3 sweet NG produced. © 2014 American Institute of Chemical Engineers AIChE J 60: 4174–4184, 2014  相似文献   

17.
A novel mass‐transfer intensified approach for CO2 capture with ionic liquids (ILs) using rotating packed bed (RPB) reactor was presented. This new approach combined the advantages of RPB as a high mass‐transfer intensification device for viscous system and IL as a novel, environmentally benign CO2 capture media with high thermal stability and extremely low volatility. Amino‐functionalized IL (2‐hydroxyethyl)‐trimethyl‐ammonium (S)?2‐pyrrolidinecarboxylic acid salt ([Choline][Pro]) was synthesized to perform experimental examination of CO2 capture by chemical absorption. In RPB, it took only 0.2 s to reach 0.2 mol CO2/mol IL at 293 K, indicating that RPB was kinetically favorable to absorption of CO2 in IL because of its efficient mass‐transfer intensification. The effects of operation parameters on CO2 removal efficiency and IL absorbent capacity were studied. In addition, a model based on penetration theory was proposed to explore the mechanism of gas–liquid mass transfer of ILs system in RPB. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2957–2965, 2013  相似文献   

18.
This study considers a CO2 feedstock in conventional methane reforming processes and metal oxide lattice oxygen based chemical looping reforming. Lattice oxygen from iron‐titanium composite metal oxide provides the most efficient co‐utilization of CO2 with CH4. A modularization chemical looping strategy is developed to further improve process efficiencies using a thermodynamic rationale. Modularization leverages the ability of two or more reactors operating in parallel to produce a higher quality syngas than a single reactor operating alone while offering a direct solution to scale up of multiple parallel reactor processes. Experiments conducted validate the thermodynamic simulation results. Simulation and experimental results ascertain that a cocurrent moving bed in a modularization system can operate under CO2 neutral or negative conditions. The results for a modularization process system for 7950 m3 per day (50,000 barrels per day) of liquid fuel indicate a ~23% reduction of natural gas usage over baseline‐case. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3343–3360, 2017  相似文献   

19.
N‐doped porous carbons (NPCs) are highly promising for CO2 capture, but their preparation is severely hindered by two factors, namely, the high cost of N‐containing polymer precursors and the low yield of carbon products. Here we report for the first time the fabrication of NPCs through the rational choice of the polymer NUT‐4, with low cost and high phenyl density, as precursor. For the material NPC‐600 obtained from carbonization at 600°C, the yield is as high as 52.1%. The adsorption capacity of CO2 on NPC‐600 reaches 6.9 mmol/g at 273 K and 1 bar, which is obviously higher than that on the benchmarks, including 13X zeolite (4.1 mmol/g) and activated carbon (2.8 mmol/g), as well as most reported carbon materials. Our results also demonstrate that the present NPCs can be completely regenerated under mild conditions. The abundant microporosity and “CO2‐philic” (N‐doped) sites are responsible for the adsorption performance. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1648–1658, 2017  相似文献   

20.
Nickel is a cheaper metallic material compared to palladium membranes for H2 separation. In this work, metallic Ni hollow fiber membranes were fabricated by a combined phase inversion and atmospheric sintering method. The morphology and membrane thickness of the hollow fibers was tuned by varying the spinning parameters like bore liquid flow rate and air gap distance. H2 permeation through the Ni hollow fibers with N2 as the sweep gas was measured under various operating conditions. A rigorous model considering temperature profiles was developed to fit the experimental data. The results show that the hydrogen permeation flux can be well described by using the Sieverts’ equation, implying that the membrane bulk diffusion is still the rate‐limiting step. The hydrogen separation rate in the Ni hollow fiber module can be improved by 4–8% when switching the co‐current flow to the countercurrent flow operation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3026–3034, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号