首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple model was proposed for char capture by molten slag surface under high-temperature gasification conditions. In this model, char particles were pneumatically conveyed onto the molten slag surface. The char particles were assumed to be captured if they reach the molten slag surface, whereas they were repelled if they reach the part that is covered by the unreacted char particles. Thus the probability of char capture was given by the balance of char feed rate per unit surface area of the slag and the rate of char consumption by the gasification reaction.Experiments were carried out to evaluate the probability of char capture by molten slag surface at 1350 °C. A ceramic tube whose bottom was closed was vertically placed in an electric furnace. Mixture of coal ash and flux (limestone) was placed at the bottom of the reactor. The reactor was heated up to a temperature higher than the melting point of the mixture of coal ash and flux, thus slag was formed at the bottom. Char particles were conveyed by gas stream from the top of the reactor to the molten slag surface. If the char particles were not captured at the reactor bottom, they were immediately conveyed out of the reactor by the gas stream. CO was produced by gasification reaction in pure CO2 or CO2 diluted by N2. The conversion of carbon to CO decreased with increasing char feed rate. The effect of char properties such as particle size, density, and gasification rate, on the conversion of carbon to CO was evaluated. The theoretical results agreed well with the experimental results.  相似文献   

2.
Reactivities of seventeen 40 × 100 mesh (U.S.) coals charred to 1000 °C have been measured at 910 °C in 0.1 MPa of a N2H2O mixture containing water vapour at a partial pressure of 2.27 kPa. Char reactivity decreases, in general, with increasing rank of the parent coal. The chars show a 250-fold difference in their reactivities. Results suggest that gasification of chars in air, CO2 and steam involves essentially the same mechanism and that relative gasification rates are controlled by the same intermediate oxygen-transfer step. Removal of inorganic matter from raw coals prior to their charring or from chars produced from raw coals decreases the reactivities of lower-rank chars, whereas reactivities of higher-rank chars increase. Addition of H2 to steam has a marked retarding effect on char reactivity in most cases. However, in a few cases H2 acts as an accelerator for gasification. The effect of particle size, reaction temperature and water-vapour pressure on char reactivity is considered.  相似文献   

3.
Two Chinese coals were used to prepare chars in a flat flame flow reactor which can simulate the temperature and gas composition of a real pulverized coal combustion environment. Acid treatment on the YB and SH chars was applied to obtain demineralized chars. Kinetic characterization of NO-char reaction was performed by isothermal thermogravimetry in the temperature range of 973–1,573 K. Presence of catalytic metal matter can increase the reactivity of chars with NO, which indicates that the catalytic effects of inherent mineral matter play a significant role in the NO-char reaction. The discrete random pore model was applied to describe the NO-char reactions and obtain the intrinsic kinetics. The model can predict the data for all the chars at various temperatures well, but underestimate the reaction rates at high carbon conversions for the raw YB and SH chars, which can be attributed to the accumulation of metal catalyst on char surface. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

4.
Biomass and coal are important solid fuels for generation of hydrogen-rich syngas from steam gasification. In this work, experiments were performed in a bench-scale gasifier to investigate the effect of coal-to-biomass ratio and the reaction kinetics for gasification of chars of biomass, coal and coal–biomass blends. In the gasification of these chars, steam was used as the gasification agent, while nitrogen was used as a gas carrier. The gasification temperature was controlled at 850, 900 and 950 °C. Gas produced was analysed using a micro-GC from which carbon conversion rate was also determined. From the experiments, it is found that the coal and biomass chars have different gasification characteristics and the overall reaction rate decreases with an increase in the ratio of coal–to-biomass.The microstructure of the coal char and biomass char was examined using scanning electronic microscopy (SEM), and it was found that the biomass char is more amorphous, whereas the coal char has larger pore size. The former enhances the intrinsic reaction rate and the latter influences the intra particle mass transportation. The difference in mass transfer of the gasification agent into the char particles between the two fuels is dominant in the char gasification.  相似文献   

5.
利用热重分析仪在800~1000℃及750~1000℃下分别对11种生物质原焦及6种生物质脱灰焦进行了CO2等温气化实验,用碳转化率x=0.2时的瞬时气化反应速率rc,0.2对反应速率rc进行无量纲化处理;根据简单碰撞理论,推导得出了生物质焦炭气化反应速率的表达式,求取了17种生物质焦炭气化反应的活化能;结合催化理论与简单碰撞理论建立了生物质焦炭气化反应活化能的经验预测模型. 结果表明,转化率达0.2后,各焦炭不同温度下无量纲气化反应速率曲线基本重合,表明不同温度下焦炭微观结构在转化过程中具有基本相同的演变规律. 各焦炭的活化能与催化剂所占据的活性位比例存在良好的对数关系. 忽略催化效应的影响,焦炭本征气化反应的活化能趋于某一定值,约为254.35 kJ/mol,而完全催化反应活化能约为66.02 kJ/mol.  相似文献   

6.
低阶煤低温热解半焦在模拟高炉喷吹条件下的燃烧性能   总被引:1,自引:0,他引:1  
采用自制固定床热解装置在隔绝空气的条件下制备神木长焰煤热解终温分别为400℃、450℃、500℃及550℃的热解半焦,利用管式沉降炉模拟高炉喷吹条件研究神木长焰煤低温热解半焦的燃烧性能,并考察了热解终温、半焦喷吹粒径以及燃烧反应温度对半焦燃烧性能的影响。研究表明:低温热解半焦的燃烧性能优于实验所选用无烟煤的燃烧性能,半焦的燃烧性能与其燃料比之间存在负相关关系,即燃料比越高,燃烧性能越差;降低热解终温、减小半焦喷吹粒径以及提高燃烧反应温度均能改善半焦的燃烧性能,当热解终温为400℃、喷吹粒径100~200目、燃烧反应温度为1100℃时半焦的燃尽度最佳为96%。本实验半焦制备及燃烧条件与现有低温热解和高炉喷吹工艺相符,且热解半焦各项性能均符合喷吹用煤指标。  相似文献   

7.
For five coals, the reactivity of char-CO2 gasification was investigated with a pressurized thermogravimetric analyzer (PTGA) in the temperature range 850-1,000 C and the total pressure range 0.5-2.0 MPa. The effect of coal rank, initial char characteristics and pressure on the reaction rate were evaluated for five coal chars. The reactivity of low lank coal char was better than that of high rank coal char. It was found that Meso/macro-pores of char markedly affect char reactivity by way of providing channels for diffusion of reactant gas into the reactive surface area. Over the range of tested pressure, the reaction rate is proportional to CO2 partial pressure and the reaction order ranges from about 0.4 to 0.7 for five chars. Kinetic parameters, based on the shrinking particle model, were obtained for five chars.  相似文献   

8.
Some biomass fuels produce more NOx than coal on the basis of heating value, giving rise to the necessity and importance of controlling NOx emission in biomass combustion. The present study investigated the NO reduction over biomass char in a fixed bed quartz reactor in the temperature range of 973–1173 K. The reaction rates of three biomass chars (sawdust, rice husk and corn straw) with NO were compared with Datong bituminous coal char. The results show that the reaction orders of biomass chars for NO are of fractional order and independent of temperature. Biomass chars are more active in reducing NO than coal char. The characteristics of biomass char affect NO conversion. Biomass char formed at high pyrolysis temperature, especially large in particle size, is less active in reducing NO. To some extent, increase of reaction temperature and char loading enhance NO conversion. There exists an optimum bed height for the highest NO conversion. Moreover, NO reduction over biomass char is also enhanced in the presence of CO, O2 and SO2.  相似文献   

9.
以中国华能集团清洁能源技术研究院(Huaneng Clean Energy Research Institute,HNCERI)两段干粉加压气化炉为研究对象,采用考虑了焦炭颗粒表面气体组分扩散效应的随机孔模型计算焦炭气化反应速率以评估碳转化率。同时,耦合熔渣子模型计算气化炉一段壁面固液渣层分布特性和热损失,研究了煤粉粒径对HNCERI气化炉碳转化率和固液渣层分布特性的影响。结果表明所构建的模型可以准确预测气化炉出口主要气体组分组成、碳转化率和气化炉一段壁面热损失;气化炉一段碳转化率受固有气化速率和停留时间控制,二段主要受颗粒停留时间控制;因此,通过减小煤粉粒径可以减小气体在颗粒表面扩散阻力,有利于提高气化炉一段碳转化率,而适量增加煤粉粒径可以增加煤粉颗粒在气化炉二段的停留时间,有利于提高二段碳转化率。模拟结果显示煤粉颗粒粒径从20μm增加到200μm,一段碳转化率从99.68%降低到了95.06%,二段碳转化率从69.03%增加到了89%。煤粉粒径对气化炉上缩口和直段壁面液态渣层分布影响很小,但显著影响固态渣层厚度的发展。  相似文献   

10.
《Fuel》2005,84(7-8):885-892
The gasification of beech wood char and oil palm shell char with carbon dioxide and steam was studied. To avoid heat and mass transport limitations during gasification, the amount of char, particle size and flow rate were varied in isothermal experiments. A rate expression of the Langmuir–Hinshelwood-type was applied to match the experimental data at different partial pressures and reaction temperatures in the intrinsic regime. Furthermore, the reactive surface area (RSA) of the biomass chars was determined as a function of the degree of conversion by the temperature-programmed desorption technique (TPD). The results show that the reaction rate is in general proportional to the RSA. The surface related reaction rates for the studied biomass chars are comparable to surface related reaction rates for coal chars at similar reaction temperatures.  相似文献   

11.
The effect of preoxidation of two highly caking coals in the temperature range 120–250 °C on weight loss during pyrolysis in a N2 atmosphere up to 1000 °C and reactivity of the resultant chars in 0.1 MPa air at 470 °C has been investigated. Preoxidation markedly enhances char reactivity (by a factor of up to 40); the effect on char reactivity is more pronounced for lower levels of preoxidation. For a given level of preoxidation, the oxidation temperature and the presence of water vapour in the air used during preoxidation have essentially no effect on weight loss during pyrolysis and char reactivity. An increase in particle size of the caking coals reduces the rate of preoxidation as well as subsequent char reactivity. Preoxidation of caking coals sharply increases the surface area of the chars produced. Compared to heat treatment in a N2 atmosphere, pyrolysis in H2 of either the as-received or preoxidized coal results in a further increase in weight loss and a decrease in subsequent char reactivity.  相似文献   

12.
水冷壁气流床气化炉的核心思想是"以渣抗渣",因此对熔渣沉积形态与流动规律的研究尤为重要。文中在实验室小型水冷壁气化炉热模装置上,以神府煤气化灰渣、柴油和纯氧气为原料模拟气流床水冷壁气化实验,采用高温内窥镜并结合数字图像处理技术研究了熔渣的沉积、流动过程。实验结果表明:气化炉操作温度高于熔渣临界黏度温度时,渣层表面灰渣处于熔融状态;运动到壁面处的灰渣颗粒主要被熔融渣层吸收;熔渣的流动速度和渣层表面温度有关系,渣层表面温度越高,熔渣流动速度越大。在实验条件下,熔渣层表面速度约为0.002 6—0.003 m/s。  相似文献   

13.
A range of coals from different parts of the world was studied to determine if there were any common relationships that could be determined to gain a clearer understanding of the distribution of coal properties within different particle-sizes. The properties examined were proximate analysis, maceral analysis and %Unreactives from image analysis. Each fraction was also pyrolysed in a drop-tube furnace at 1300°C, 1 vol% oxygen and a residence time of 200 ms and the resulting chars analysed for morphology using image analysis. There were substantial variations between the particle-size distributions of the different coal samples even though they were ground to the same specification for trials on a combustion rig. Ash distributions showed in all cases that the smallest particle size (−38 μm) had either the highest ash level or was very close to it. However, the trends in ash level for increasing particle size showed variations between coals with some coals showing increases in ash towards the larger particles. Fusinite content did not necessarily concentrate in the smallest size fraction, however, liptinite content did increase with particle size. %Unreactives generally increases with particle size and is related to char morphology through an empirical parameter, the ACA [5]. In addition the ACA [5] parameter showed the effect of both particle size and %Unreactives on char morphology and clearly showed the significant influence of particle size on burnout. A parameter such as this could, therefore, be used in burn-out models and further correlated with %Unreactives and particle size.  相似文献   

14.
Zongbin Zhao  Wen Li  Baoqing Li 《Fuel》2003,82(8):949-957
NO-char reaction and char combustion in the presence and absence of mineral matter were studied in a quartz fixed bed reactor. Eight chars were prepared in a fluidized bed at 950 °C from four Chinese coals that were directly carbonized without pretreatment or were first deashed before carbonization. The decomposition of NO over these coal-derived chars was studied in Ar, CO/Ar and O2/Ar atmospheres, respectively. The results show that NO is more easily reduced on chars from the raw coals than on their corresponding deashed coal chars. Mineral matter affects the enhancement both of CO and O2 on the reduction of NO over coal chars. Alkali metal Na in mineral matter remarkably catalyzes NO-char reaction, while Fe promotes NO reduction with CO significantly. The effect of mineral matter on the emission of NO during char combustion was also investigated. The results show that the mineral constituents with catalytic activities for NO-char reaction result in the decrease of NO emission, whereas mineral constituents without catalytic activities lead to the increase of NO emission. Correlation between the effects of mineral matter on NO-char reaction and NO emission during char combustion was also discussed.  相似文献   

15.
The structural features of chars derived from pyrolysis of mallee wood of different particle sizes in a novel fluidized-bed/fixed-bed reactor have been investigated. Raman spectroscopy was used for structural evaluation of chars. Spectra were curve-fitted with 10 Gaussian bands representing typical structural features of the chars. The temperature had a significant influence on the evolution of char structure and thus the total Raman peak area between 800 and 1800 cm− 1 is seen to decrease significantly with increasing pyrolysis temperature for all chars. On the other hand, the ratio ID/I(Gr + Vl + Vr) between the band intensities of condensed aromatic ring systems (> 6 rings) and amorphous char structures with small aromatic ring (3-5 rings) systems is seen to increase with increasing temperature. The particle size of biomass has a great role in char structure at fast heating rate (> 1000 °C/s) pyrolysis although it has no effect on char structure at slow heating rate pyrolysis (0.17 °C/s). However, in the bigger biomass particle, the structure of char prepared under fast heating rate pyrolysis is similar to that of the structure of char prepared under slow heating rate pyrolysis.  相似文献   

16.
刘雨廷  何榕 《化工学报》2016,67(1):339-348
为了深入研究煤焦燃烧的机理并提高对煤焦燃烧过程的预测精度,建立了一个综合的煤焦燃烧模型。该模型考虑了煤焦颗粒孔隙内二次反应与扩散的耦合作用、煤焦燃烧反应阶数的变化和反应过程中CO/CO2比例等问题。使用热天平(TGA)对11种煤焦的燃烧特性进行分析,测得各种煤焦的表观活化能与指前因子,以确定模型中的待定参数。在沉降炉(DTF)中对这11种煤焦做燃烧实验,用TGA基于灰分守恒测得DTF炉管出口处的煤焦样品的转化率。运用建立的模型模拟这些煤焦的燃烧过程,预测的转化率与实验结果有较好的吻合度,相比传统的本征动力学模型,该模型预测的精度有了较大提高,证明了该模型能适用于从褐煤到无烟煤的较广煤焦范围。研究还发现,煤焦燃烧的表观反应阶数在燃烧过程中不断减小并最终趋于稳定。  相似文献   

17.
A non-steady boundary layer model is developed for numerical simulation of combustion and gasification of a single shrinking char particle. The model considers mass and energy conservation coupled with heterogeneous char reactions producing CO and homogeneous oxidation of CO to CO2 in the boundary layer surrounding the char particle. Mass conservation includes accumulation, molecular diffusion, Stefan flow and generation by chemical reaction. Energy conservation includes radiation transfer at the particle surface and heat accumulation within the particle. Simulation results predict experimentally measured conversion and temperature profiles of a burning Spherocarb particle in a laminar flow reactor. Effects of bulk oxygen concentration and particle size on the combustion process are addressed. Predicted particle temperature is significantly affected by boundary layer combustion of CO to CO2. With increasing particle size, char gasification to char combustion ratio increases, resulting in decreasing particle temperature and increasing peak boundary layer temperature.  相似文献   

18.
The effect of coal particle size on pyrolysis and steam gasification   总被引:3,自引:0,他引:3  
For future power generation from coal, one preferred option in the UK is the air-blown gasification cycle (ABGC). In this system coal particles sized up to 3 mm, perhaps up to 6 mm in a commercial plant, are pyrolysed and then gasified in air/steam in a spouted bed reactor. As this range of coal particle sizes is large it is of interest to investigate the importance of particle size for those two processes. In particular the relation between the coal and the char particle size distribution was investigated to assess the error involved in assuming the coal size distribution at the on-set of gasification. Different coal size fractions underwent different changes on pyrolysis. Smaller coal particles were more likely to produce char particles larger than themselves, larger coal particles had a greater tendency to fragment. However, for the sizes investigated in this study ranging from 0.5 to 2.8 mm, the pyrolysis and gasification behaviour was found not to vary significantly with particle size. The coal size fractions showed similar char yields, irrespective of the different char size distributions resulting from pyrolysis. Testing the reactivity of the chars in air and CO2 did not reveal significant differences between size fractions of the char, nor did partial gasification in steam in the spouted bed reactor. From the work undertaken, it can be concluded that pyrolysis and gasification within the range of particle sizes investigated are relatively insensitive to particle size.  相似文献   

19.
To get insights into the burning of large coal particles as agitated beds in the recently developed rotary chambers, combustion behaviour of eight Turkish lignites was studied in a laboratory-size rotating wire mesh basket. Single particles from 0.5 to 5 g average weight were loaded in the basket, which was then inserted into a preheated tube furnace. The net effect of removing ash continuously as a result of agitation on the combustion rates and times was searched for all the lignites, whereas the other parameters, such as rotation speed of the basket, particle size, temperature and air velocity, were investigated on only Çan lignite. Because both volatile and char combustion times and their confident prediction have important bearings in the design and capacity of coal combustion systems, experimentally determined char combustion rates and times were compared to those found by using double resistance theory. It was observed that combustion of lignite chars in the agitated beds proceed faster and lasted in shorter times as expected, mainly due to the removal of ash layer by agitation during the period of char combustion. The influence of the agitation on the combustion of chars from lignites with high-volatile matter content was especially noticeable. Combustion rates increased more as the speed of basket was increased. A combined control mechanism could be used to describe combustion rates of lignite chars.  相似文献   

20.
入炉焦丁粒度是电热法黄磷生产节能降耗的关键问题之一。介绍电热法黄磷原料焦丁的作用、质量标准、粒度要求,焦丁粒度与化学还原反应的关系。分析焦丁粒度对黄磷生产消耗及经济技术指标的影响。通过高温副反应对黄磷生产的影响分析,表明必须严格控制入炉焦丁粒度,避免熔池温度上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号