首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,3-Butadiene (BD) is a petrochemical-based volatile organic compound, extensively used for the manufacture of synthetic rubber. There is no method reported for its recovery from nitrogen mixture. Herein, for the first time, BD is efficiently recovered by gas separation through facile and novel mixed-metal ZIF-8 based mixed matrix membranes (MMMs). Addition of Ni-ZIF-8 nanoparticles in PDMS matrix, significantly improved the penetrant-membrane interactions and the solution-diffusion properties of BD. Positron annihilation lifetime spectroscopy analysis showed that the well dispersion of Ni-ZIF-8 in PDMS enhanced the free volume of membrane and created efficient continuous paths for BD diffusion. Then, 15 wt% Ni-ZIF-8 MMM exhibited the BD permeance of 323 GPU and the BD/N2 ideal selectivity of 19.5, which were 60 and 81% higher than pure PDMS membrane, respectively. The simultaneous enhancement of BD permeance and BD/N2 ideal selectivity indicated that Ni-ZIF-8 was an effective filler applied in MMMs for efficient BD recovery.  相似文献   

2.
The effects of oxygen functional groups and alkyl chains at the surface of graphene oxide (GO) on the thermal stability, mechanical properties and foaming behavior of poly(methyl methacrylate) (PMMA) nanocomposites were investigated. Alkyl‐functionalized GO (GO‐ODA) was prepared by grafting octadecylamine (ODA) on the surface of GO. PMMA/GO and PMMA/GO‐ODA nanocomposite were obtained by solution blending and were foamed using supercritical carbon dioxide (scCO2). GO‐ODA, with the presence of alkyl chains, showed a better dispersion capability in PMMA matrix than GO with a large amount of oxygen functional groups. In addition, the good dispersion capability increased thermal stability and mechanical strength. In comparison with PMMA/GO samples foamed at 70 °C, PMMA/GO‐ODA nanocomposite foams displayed improved cell structures with higher cell density, smaller cell size and more homogeneous cell size distribution, which results from the strong heterogeneous nucleation due to alkyl chains on the GO surface. The foaming behaviors became more complicated at 80 °C as the GO might be intercalated and exfoliated with the aid of scCO2, thus further enhancing the heterogeneous nucleation during the foaming process. The results indicated that the surface chemistry of GO was closely related to the properties and foaming behavior of the nanocomposites. © 2016 Society of Chemical Industry  相似文献   

3.
Ultrathin (down to 300 nm), high quality carbon molecular sieve (CMS) membranes were synthesized on mesoporous γ‐alumina support by pyrolysis of defect free polymer films. The effect of membrane thickness on the micropore structure and gas transport properties of CMS membranes was studied with the feed of He/N2 and C3H6/C3H8 mixtures. Gas permeance increases with constant selectivity as the membrane thickness decreases to 520 nm. The 520‐nm CMS membrane exhibits C3H6/C3H8 mixture selectivity of ~31 and C3H6 permeance of ~1.0 × 10?8 mol m?2 s?1 Pa?1. Both C3H8 permeance and He/N2 selectivity increase, but the permeance of He, N2, and C3H6 and the selectivity of C3H6/C3H8 decrease with further decrease in membrane thickness from 520 to 300 nm. These results can be explained by the thickness‐dependent chain mobility of the polymer film which yields thinner final CMS membranes with reduction in pore size and possible closure of C3H6‐accessible micropores. © 2015 American Institute of Chemical Engineers AIChE J, 62: 491–499, 2016  相似文献   

4.
The mixed matrix membranes (MMMs) consisting zeolitic-imidazolate framework-8 (ZIF-8) nanoparticles in a polymer have been of considerable interest in separation applications. The fillers used are mostly synthesized using the solvothermal method. In this study, the ZIF-8 nanoparticles were synthesized using a solvent-less and salt-free mechanochemical method and were added to 6FDA-TrMPD polyimide to prepare MMMs. The single gas permeation of C3H6 and C3H8 through the MMMs was investigated. The C3H6 permeability and C3H6/C3H8 ideal selectivity of a 20 wt% mechano-synthesized ZIF-8/6FDA-TrMPD MMM were 70% and 32% higher than those of the neat polymer membrane at 0.1 MPa and 308 K, respectively. The C3H6/C3H8 separation performance of the mechano-synthesized ZIF-8 MMM was similar to that of the conventional solvothermal-synthesized ZIF-8 MMM. This separation performance was in good agreement with the Maxwell model. Temperature and pressure dependence analyses confirmed that the mechano-synthesized ZIF-8 nanoparticles acted as molecular sieves in the MMMs for the C3H6 and C3H8 permeation.  相似文献   

5.
The present study deals with preparing mixed matrix membranes (MMMs), a new polysaccharide-based natural polymer used as a matrix with functionalized carbon nanotubes (FCNTs) and graphene oxide (GO) used as an inorganic filler. This work identified the effect of the inorganic fillers (FCNTs or GO) with naturally occurring polymer for gas separation. The incorporation of fillers improves the gas separation performance of MMMs. In GG/FCNTs MMMs, the selectivities of CO2/N2 and CO2/H2 were enhanced by 55.24% and 57.89%, respectively. Moreover, in GG/GO MMMs, the selectivities of CO2/N2 and CO2/H2 were improved by 99.50% and 50%, respectively. The membrane was characterized by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The SEM analysis of GG/GO MMMs reveals layered structure, and GG/FCNTs MMMs create passages to transport gases. The Universal testing machine (UTM) is used to analyze the mechanical properties of pristine and modified membranes.  相似文献   

6.
In this study, new monomers having silica groups were synthesized as an intermediate for the preparation of poly(imide siloxane)-zeolite 4A and 13X mixed matrix membranes (MMMs). The effects of membrane preparation steps, zeolite loading, precursor’s composition, and pore size of zeolite on the gas separation performance of these mixed matrix membranes were studied. The new diamine monomer was prepared from 3,5-diaminobenzoic acid (3,5-DABA), 3-aminopropyltrimethoxysilane (3-APTMS), and zeolite 4A and zeolite 13X in N-methyl-2-pyrollidone (NMP) at 180 °C. Poly(imide siloxane)-zeolite 4A and 13X MMMs were synthesized from pyromellitic dianhydride (PMDA) and 4,4-oxydianiline (ODA) in NMP using a two-step thermal imidization. SEM images of the MMMs show the interface between polymer and zeolite phases getting closer when surface modified zeolite is used. The increase in glass transition temperature (T g) confirms the polymer chain becoming more rigid induced by the presence of zeolite. The experimental results indicated that a higher zeolite loading resulted in a decrease in gas permeability and an increase in gas pair selectivity. In terms of O2 and N2 permeance and ideal selectivity, the separation performances of poly(imide siloxane)-zeolite MMMs were related to the zeolite type and zeolite pore dimension.  相似文献   

7.
In this work, a new polydimethylsiloxane (PDMS) membrane was synthesized and its sorption, diffusion, and permeation properties were investigated using H2, N2, O2, CH4, CO2, and C3H8 as a function of pressure at 35°C. PDMS, as a rubbery membrane, was confirmed to be more permeable to more condensable gases such as C3H8. The synthesized PDMS membrane showed much better gas permeation performance than others reported in the literature. Based on the sorption data of this study and other researchers' works, some valuable parameters such as Flory‐Huggins (FH) interaction parameters, χ, etc., were calculated and discussed. The concentration‐averaged FH interaction parameters of H2, N2, O2, CH4, CO2, and C3H8 in the synthesized PDMS membrane were estimated to be 2.196, 0.678, 0.165, 0.139, 0.418, and 0.247, respectively. Chemical similarity of O2, CH4, and C3H8 with backbone structure of PDMS led to lower χ values or more favorable interactions with polymer matrix, particularly for CH4. Regular solution theory was applied to verify correctness of evaluated interaction parameters. Local effective diffusion coefficient of C3H8 and CO2 increased with increasing penetrant concentration, which indicated the plasticization effect of these gases over the range of penetrant concentration studied. According to high C3H8/gas ideal selectivity values, the synthesized PDMS membrane is recommended as an efficient membrane for the separation of organic vapors from noncondensable gases. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The gas transport behaviors of O2, N2, CO2 and CH4 were investigated in mixed matrix membranes (MMMs) prepared from polydimethylsiloxane (PDMS) filled with surface functionalized silica (SiO2) nanoparticles. SiO2 surface modification was performed through silanization using chlorodimethyl silane. FTIR confirmed the presence of dimethyl silane on SiO2 (Si-DMS) whereas elemental analysis showed 94.2% successful modification. Thermal gravimetric analysis revealed the improved thermal stabilities of PDMS MMMs. Field emission scanning electron microscopy revealed the uniform distribution of Si-DMS within the membrane. The effect of Si-DMS in gas permeabilities (P) was in contrast to the Maxwell model prediction. Enhanced P values of all gases in PDMS MMMs (as compared to pure PDMS) were associated to the improvement in diffusion coefficients (Dm) despite the reduction in gas solubility coefficients. The increase in Dm values was attributed to the higher free volumes in PDMS MMMs. However, slight declines (<8% of pure PDMS) in selectivities were observed. Overall, PDMS MMMs have improved performances due to enhanced gas permeabilities.  相似文献   

9.
The ZIF-8@Agmim core-shell hybrid material was synthesized via a favorable post-modification method of ion exchange (PMIE). This infrequent ZIF-8@Agmim core-shell structure maintains a well-integrated pore size that is almost the same as ZIF-8. The similar equilibrium isotherms with ZIF-8 and better kinetic separation toward propylene/propane than ZIF-8 render ZIF-8@Agmim to be an interesting candidate for propylene/propane separation. The core-shell hybrid nanomaterial was further used as nanofillers in the polymer of intrinsic microporosity matrix (PIM-1) for propylene/propane separation. The resultant mixed-matrix membranes (MMMs) exhibited a simultaneous increase in C3H6 permeability and C3H6/C3H8 ideal selectivity compared to pure polymer membrane owing to a synergistic effect of molecular sieving from ZIF-8 and π-complexation of Ag+ with propylene. The separation performance of the prepared MMM surpasses the upper bound line of polymer membranes. Furthermore, the hybrid materials possess superb photochemical stability and the corresponding MMMs exhibit excellent anti-aging property and long-term stability.  相似文献   

10.
Polyether‐block‐amide (Pebax)/graphene oxide (GO) mixed‐matrix membranes (MMMs) were prepared with a solution casting method, and their gas‐separation performance and mechanical properties were investigated. Compared with the pristine Pebax membrane, the crystallinity of the Pebax/GO MMMs showed a little increase. The incorporation of GO induced an increase in the elastic modulus, whereas the strain at break and tensile strength decreased. The apparent activation energies (Ep) of CO2, N2, H2, and CH4 permeation through the Pebax/GO MMMs increased because of the greater difficulty of polymer chain rotation. The Ep value of CO2 changed from 16.5 kJ/mol of the pristine Pebax to 23.7 kJ/mol of the Pebax/GO MMMs with 3.85 vol % GO. Because of the impermeable nature of GO, the gas permeabilities of the Pebax/GO MMMs decreased remarkably with increasing GO content, in particular for the larger gases. The CO2 permeability of the Pebax/GO MMMs with 3.85 vol % GO decreased by about 70% of that of the pristine Pebax membrane. Rather than the Maxwell model, the permeation properties of the Pebax/GO MMMs could be described successfully with the Lape model, which considered the influence of the geometrical shape and arrangement pattern of GO on the gas transport. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42624.  相似文献   

11.
In order to facilitate CO2 transport in Pebax-based membranes, graphene oxide (GO)/core shell ZIF-8@ZIF-67 nanocomposites were loaded in Pebax copolymer to improve CO2 permeability and selectivity. The 0.5 wt% GO doped core shell ZIF-8@ZIF-67, which gave highest CO2 adsorption capacity of 1.12 mmol/g, was used as nanocomposite. The incorporated GO/core shell ZIF enhanced CO2 adsorption via unsaturated metal sites (Zn-O or Co-O), because O atoms in GO substituted for N atoms coordinated with Zn and Co single atoms in core shell ZIF-8@ZIF-67. Positron annihilation lifetime spectroscopy indicated that GO-templated core shell ZIF nanocomposites generated extra free volume and provided low-resistance channels to facilitate CO2 transport. Fourier transform infrared spectroscopy analysis revealed that hydrogen bonds were generated between Pebax polymer chains and GO-templated core shell ZIF which improved swelling resistance and reduced interface defects. Therefore, Pebax-based MMMs loaded with 5 wt% GO/core shell ZIF-8@ZIF-67 exhibited optimum CO2 permeability (173.2 barrers) and ideal selectivity of CO2/N2 (61.9) and CO2/H2 (11.6), which were 99.7%, 66.4%, and 20.8% higher than Pebax membranes and surpass Robeson 2008 upper bound. The tensile strength increased by 17.6% to 28.8 MPa and elongation at break increased by 7.61%–554.6% when pure Pebax membranes were incorporated with 2.5 wt% GO/core shell ZIF-8@ZIF-67.  相似文献   

12.
Polysulfone (PSf) membrane shows acceptable gas separation performance, but its application is limited by the “trade-off” between selectivity and permeability. In this study, PSf mixed matrix membranes (MMMs) incorporated with palladium (Pd) nanoparticles in the inversed microemulsion were proposed for hydrogen (H2) separation. Pd nanoparticles can be kinetically stabilized and dispersed using electrostatic and/or steric forces of a stabilizer which is typically introduced during the formation of Pd nanoparticles in the inversed microemulsion. Pd nanoparticles were synthesized by loading (PdCl2) into the polymeric matrix, polyethylene glycol (PEG) which acts as reducing agent and stabilizer. The dry–wet phase inversion method was applied for the preparation of asymmetric PSf MMMs. The effects of Pd (0–4 wt%) on the membrane characteristics and separation performance were studied. Experimental findings verified that the MMMs are able to achieved a high H2/N2 selectivity of 21.69 and a satisfactory H2 permeance of 46.24 GPU due to the changes in membrane structure from fully developed finger-like structure to closed cell structure besides the growth of dense layer. However, the selectivity of H2/CO2 decreased due to the addition of PEG.  相似文献   

13.
Mixed matrix membranes (MMMs) for CO2-facilitated separation were prepared by incorporating different surface-modified multiwalled carbon nanotubes (MWCNTs) in a fixed carrier membrane material. Polymer containing amino groups, poly(vinylalcohol-co-vinylamine) (VA-co-VAm) was synthesized as polymeric matrix. MWCNTs as well as MWCNTs surface-modified with  OH and  NH2 were applied as nanofillers. The physical property, chemical structure, and membrane morphology were characterized by FT-IR, TG, XRD, DSC, CA, XPS, and SEM. The effects of content, functional group, temperature, and pressure on gas permselectivity were studied. Results show that the incorporation of nanofillers can effectively restrict the polymer chain packing and lead to low crystallinity. The MMMs exhibited higher CO2 permselectivity than the pure polymeric membrane. For all the MMMs, the CO2 permeance and selectivity increased with MWCNTs contents to a maximum and then decreased. MWCNT-NH2 can be regarded as the most effective nanofiller. MMMs with 2.0 wt % MWCNT-NH2 displayed the highest CO2 permeance of 132 GPU and CO2/N2 selectivity of 74. Both CO2 permeance and selectivity were decreased with feed gas pressure and temperature. The membrane exhibited good stability in the testing with the binary gas mixtures of CO2/N2 for 110 h under 0.54 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47848.  相似文献   

14.
Graphene oxide (GO), as an important precursor of graphene, was functionalized using alkyl‐amines with different structure and then reduced to prepare reduced amines grafted graphene oxide (RAGOs) by N2H4 · H2O. The successful chemical amidation reaction between amine groups of alkyl‐amines and carboxyl groups of GO was confirmed by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA). Then RAGOs/polyimide nanocomposites were prepared via in situ polymerization and thermal curing process with different loadings of RAGOs. The modification of amine chains lead to homogenous dispersion of RAGOs in the composites and it formed strong interfacial adhesion between RAGOs and the polymer matrix. The mechanical and electrical properties of polyimide (PI) were significantly improved by incorporation of a small amount of RAGOs, the influence of structure of amines grafted on RAGOs on the enhancement effects of composites was discussed. The research results indicated that the proper structure of amine could effectively enhance the properties of composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43820.  相似文献   

15.
Mesoporous MCM-48 silica was synthesized by templating method and the structure of particles was characterized by XRD, TEM and N2 adsorption techniques. The surface modification of particles in order for introducing into PSF matrix was performed by dimethyldichlorosilane (DMDCS) silylation agent. SEM images of as-synthesized and modified MCM-48/PSF MMMs indicate that in the modified MCM-48 silica particles adhered well to the PSF matrix and that the synthesized MMMs were defect free. The incorporation of MCM-48 particles in to the PSF matrix and also surface coating of these MMMs by polydimethylsiloxane (PDMS) were performed. The quality of surface coating was investigated by SEM images and permeability tests. For all gases tested (N2, CO2, CH4 and O2), the permeabilities increased in proportion to the weight percent of MCM-48 present in the film and the calculated CO2/CH4 and O2/N2 selectivities of PDMS coated membranes showed enhancement in ideal and actual selectivities both.  相似文献   

16.
Polysulfone (PSf)‐based mixed matrix membranes (MMMs) with the incorporation of titanium dioxide (TiO2) nanoparticles were prepared. Distribution and agglomeration of TiO2 in polymer matrix and also surface of membranes were observed by scanning electron microscopy, transmission electron microscopy, and energy dispersive X‐ray. Variation in surface roughness of MMMs with different TiO2 loadings was analyzed by atomic force microscopy. Physical properties of membranes before and after cross‐linking were identified through thermal gravimetric analysis. At low TiO2 loadings (≤3 wt%), both CO2 and CH4 permeabilities decreased and consequently gas selectivity improved and reached to 36.5 at 3 bar pressure. Interestingly, PSf/TiO2 3 wt% membrane did not allow to CH4 molecules to pass through the membrane and this sample just had CO2 permeability at 1 bar pressure. Gas permeability increased considerably at high filler contents (≥5 wt%) and CO2 permeance reached to 37.7 GPU for PSf/TiO2 7 wt% at 7 bar pressure. It was detected that, critical nanoparticle aggregation has occurred at higher filler loadings (≥5 wt%), which contributed to formation of macrovoids and defects in MMMs. Accordingly, MMMs with higher gas permeance and lower gas selectivity were prepared in higher TiO2 contents (≥5 wt%). POLYM. ENG. SCI., 55:367–374, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
In the present study, graphene oxide (GO) was incorporated into poly(vinylidene fluoride) (PVDF) and chemically modified PVDF (M‐PVDF) to prepare mixed matrix membranes (MMMs) for gas separation application. Performed analyses proved appropriate dispersion of exfoliated GO sheets in polymer matrices and sufficient compatibility at the interfacial phases. M‐PVDF based MMMs were thermally and mechanically more stable relative to the PVDF‐based MMMs. The oxygen containing functional groups in M‐PVDF was probably the main reason for this more stability. PVDF/GO MMMs rendered low gas permeability and high selectivity. Both impermeable GO sheets and crystalline phases of PVDF were responsible for such behavior. On the other hand, interestingly gas permeability of M‐PVDF/GO MMMs was enhanced while no substantial decline was recorded in gas selectivity. For instance, He and CO2 permeability was increased 12.46% and 25.89%, respectively, compared to the pure PVDF membrane. This behavior originated from functional groups of M‐PVDF and the interaction of these groups with GO sheets. Since GO often amplified gas barrier properties of polymers, such increscent would be appreciable. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46271.  相似文献   

18.
Composite layer containing postmodified MIL‐53 (P‐MIL‐53) was exploited to be coated on as‐fabricated asymmetric hollow fiber membrane for improving gas separation performance. The morphology and pore size distribution of P‐MIL‐53 particles were characterized by SEM and N2 adsorption isotherm. The EDX mapping and FTIR spectra were performed to confirm the presence of P‐MIL‐53 deposited on the outer surface of hollow fiber membranes. The results of pure gas permeation measurement indicated that incorporation of P‐MIL‐53 particles in coating layer could improve permeation properties of hollow fiber membranes. By varying coating times and P‐MIL‐53 content, the membrane coated with PDMS/15%P‐MIL‐53 composite by three times achieved best performance. Compared to pure PDMS coated membrane, CO2 permeance was enhanced from 29.96 GPU to 40.24 GPU and ideal selectivity of CO2/N2 and CO2/CH4 also increased from 23.28 and 26.95 to 28.08 and 32.03, respectively. The gas transport through composite membrane was governed by solution‐diffusion mechanism and CO2 preferential adsorption of P‐MIL‐53 contributed to considerable increase of CO2 solubility resulting in accelerated permeation rate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44999.  相似文献   

19.
ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014  相似文献   

20.
Mixed matrix membranes (MMMs) based on metal–organic framework (MOF) have great promising application in separation of gas mixtures. However, achieving a good interfacial compatibility between polymer and MOF is not straightforward. In this work, focusing on one of the most challenging olefin/paraffin separations: propylene/propane (C3H6/C3H8), we demonstrate that modification of the MOF filler via dopamine polymerization using a double solvent approach strongly improves interfacial compatibility. The resulting membranes show an outstanding separation performance and long-term stability with propylene permeability nearly 90 Barrer and propylene/propane selectivity close to 75. We anticipate that similar MOF modification strategies may help solve the problem of interface defects in the manufacture of MMMs and be extended to other porous fillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号