首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Liquid mixtures of formaldehyde, water, and butynediol are complex reacting multicomponent systems in which formaldehyde forms oligomers both with water and butynediol. ‐ and ‐NMR spectra of these mixtures are elucidated. The species distribution of the oligomers is quantitatively determined by ‐NMR spectroscopy. The measurements cover temperatures from 293 to 366 K, overall formaldehyde mass fractions from to , and overall butynediol mass fractions from to . A mole fraction‐based and an activity‐based model of the chemical equilibrium in the studied system are developed and chemical equilibrium constants are reported. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4442–4450, 2017  相似文献   

2.
A comprehensive methodology to carry out a sequential parameter estimation approach has been developed and validated for the determination of the kinetic parameters of the crystallization of a generic organic compound. The strength of the approach lies in the thorough design of isothermal experiments which facilitate the isolation and/or decoupling of the different crystallization phenomena. This methodology has been applied for the parameter estimation of primary and secondary nucleation, growth and agglomeration kinetics. The resulting crystallization model has been able to reproduce the quantiles , and of the volume‐based particle size distribution of an independent seeded validation experiment with an error below 10 μm. The deviation in the prediction has been increased in the case of an independent unseeded experiment, although errors below the uncertainty of the measurement have been always obtained. The methodology here proposed is intended to be an efficient strategy for rapid modeling of batch crystallization processes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3992–4012, 2016  相似文献   

3.
We numerically study coalescence of air microbubbles in water, with density ratio 833 and viscosity ratio 50.5, using lattice Boltzmann method. The focus is on the effects of size inequality of parent bubbles on the interfacial dynamics and coalescence time. Twelve cases, varying the size ratio of large to small parent bubble from 5.33 to 1, are systematically investigated. The “coalescence preference,” coalesced bubble closer to the larger parent bubble, is well observed and the captured power‐law relation between the preferential relative distance χ and size inequality γ, , is consistent to the recent experimental observations. Meanwhile, the coalescence time also exhibits power‐law scaling as , indicating that unequal bubbles coalesce faster than equal bubbles. Such a temporal scaling of coalescence on size inequality is believed to be the first‐time observation as the fast coalescence of microbubbles is generally hard to be recorded through laboratory experimentation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1441–1450, 2017  相似文献   

4.
This work forms part of a broader study that describes a methodology to validate experimental data of phase equilibria for multicomponent systems from a thermodynamic‐mathematical perspective. The goal of this article is to present and justify this method and to study its application to vapor–liquid equilibria (VLE) and vapor–liquid–liquid equilibria (VLLE), obtained under isobaric/isothermal conditions. A procedure based on the Gibbs‐Duhem equation is established which presents two independent calculation paths for its resolution: (a) an integral method and (b) a differential method. Functions are generated for both cases that establish the verification or consistency of data, δψ for the integral test and δζ for the differential approach, which are statistically evaluated by their corresponding average values [ , ], and the standard deviations [ , ]. The evaluation of these parameters for application to real cases is carried out using a set of hypothetical systems (with data generated artificially), for which the values are adequately changed to determine their influence on the method. In this way, the requirements of the proposed method for the data are evaluated and their behavior in response to any disruption in the canonical variables (p,T, phase compositions). The conditions for thermodynamic consistency of data are: , , , and . In systems with VLLE, in addition to the previous criteria, must occur that: and . The new proposed method has been tested with a set of 300 experimental binary systems, biphasic and triphasic, obtained from published bibliography, and the results are compared with those of other tests commonly used for testing thermodynamic consistency. The results show that the greater rigor of the proposed method is mainly due to the simultaneous verification of various independent variables. As a result, the conditions for the new test are verified for fewer systems than using other tests mentioned in the literature (i.e., Fredenslund‐test and direct of Van Ness). Its unique application is sufficient to ensure the consistency of experimental data, without using other tests. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

5.
A power‐law expression is proposed for correlating the temperature dependence of infinite‐dilution activity coefficients ( ) for nonelectrolyte solute–solvent binary pairs and for pairs including an ionic liquid: , where θij = 0 for Lewis–Randall ideal solutions, θij = 1 for classic enthalpy‐based Scatchard–Hildebrand regular solution and van Laar models, and ?5 < θij < 5 for most real binaries. The exponent θij is a function of partial molar excess enthalpy ( ) and entropy ( ) such that . Real binaries are classified into seven types corresponding to distinct domains of and θij. The new method provides a framework for correlating phase‐equilibrium driven temperature effects for a wide variety of chemical and environmental applications. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3675–3690, 2014  相似文献   

6.
On‐line modeling of multivariate nonlinear system based on multivariate statistical methods has been studied extensively due to its industrial requirements. In order to further improve the modeling efficiency, a fast Block Adaptive Kernel Principal Component Analysis algorithm is proposed. Comparing with the existing work, the proposed algorithm (1) does not rely on iterative computation in the calculating process, (2) combines the up‐ and downdating operations to become a single one (3) and describes the adaptation of the Gram matrix as a series of rank‐1 modification. In addition, (4) the updation of the eigenvalues and eigenvectors is of and high‐precision. The computational complexity analysis and the numerical study show that the derived strategy possesses better ability to model the time‐varying nonlinear variable interrelationships in process monitoring. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4334–4345, 2016  相似文献   

7.
We provide experimental demonstration that the spread of tracer elements in a tank containing a viscoelastic liquid and agitated by a submerged jet pointing to the base of the tank can be influenced by the relaxation time of the liquid. We analyzed the temporal spreading of the boundary of a tracer‐front in two dimensions using flow visualization at early stages and found that for a given fluid, the evolution of the tracer‐front at various injection velocities follows a universal trajectory when considered on a normalized time scale of , where t is observation time, is injection velocity and is the effective diffusivity of the tracer elements in the medium. For a different fluid, at a given , the trajectory scales with the relaxation time of the fluid. The importance of relaxation time to the evolution of a tracer‐front is something previously unreported. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3132–3140, 2017  相似文献   

8.
Hydrodynamics of collision interactions between a particle and gas‐liquid interface such as droplet/film is of keen interest in many engineering applications. The collision interaction between a suspended liquid (water) film of thickness 3.41 ± 0.04 mm and an impacting hydrophilic particle (glass ballotini) of different diameters (1.1–3.0 mm) in low particle impact Weber number ( ) range (1.4–33) is reported. Two distinct outcomes were observed—particle retention in the film at lower Weber number and complete penetration of the film toward higher Weber number cases. A collision parameter was defined based on energy balance approach to demarcate these two interaction regimes which agreed reasonably well with the experimental outcomes. It was shown that the liquid ligament forming in the complete penetration cases breaks up purely by “dripping/end pinch‐off” mechanism and not due to capillary wave instability. An analytical model based on energy balance approach was proposed to determine the liquid mass entrainment associated with the ligament which compared well with the experimental measurements. A good correlation between the %film mass entrained and the particle Bond number ( ) was obtained which indicated a dependency of Bo1.72. Computationally, a three‐dimensional CFD model was developed to simulate these interactions using different contact angle boundary conditions which in general showed reasonable agreement with experiment but also indicated deficiency of a constant contact angle value to depict the interaction physics in entirety. The computed force profiles from computational fluid dynamics (CFD) model suggest dominance of the pressure force over the viscous force almost by an order of magnitude in all the Weber number cases studied. © 2015 American Institute of Chemical Engineers AIChE J, 62: 295–314, 2016  相似文献   

9.
Positron Emission Particle Tracking (PEPT) measurements are used to track the flow of glass beads within a rotating drum fitted with (and without) lifter bars and operated in the cascading and cataracting Froude regimes. After converting the Lagrangian trajectories of a representative radio‐labeled glass bead (the tracer) into Eulerian fields under the ergodic assumption, the bed shape and kinematics are extracted for steady, fully developed flow conditions. Notwithstanding the azimuthal wall effects introduced by the lifter bars, we show a linear scaling of the local flowing layer thickness (h) with local depth‐averaged velocity and a constant average shear for direct measurements spanning the entire flowing layer (not just the central region), and high Froude regimes (cascading and cataracting) not previously investigated by scaling analysis in the literature. © 2016 American Institute of Chemical Engineers AIChE J, 63: 903–913, 2017  相似文献   

10.
Ribbon milling is a critical step in dry granulation using roll compaction as it determines the properties of granules, and subsequently the properties of final products. During ribbon milling, fragmentation of ribbons or flakes (i.e., compressed agglomerates from dry powders) are induced by either impact or abrasion. Understanding these fragmentation mechanisms is critical in optimizing ribbon milling processes. In the current study, the discrete element method (DEM) was used to model fragmentation at the microscopic level, providing a detailed insight into the underlying breakage mechanism. In DEM modeling, virtual ribbons were created by introducing an appropriate interfacial energy using the cohesive particle model based on the JKR theory. A set of three‐dimensional parallelepiped ribbons with solid fraction and surface energies ranging from and were created and then fractured during impacts with a plane at various impact velocities, to model impact dominated milling. The fragmentation rate, and the number and size of fragments (i.e., granules) resulting from the breakage of a ribbon during the impact were determined. The DEM simulations showed that the granules size distribution had a bimodal pattern and there was a strong correlation between the size of fines generated from fragmentation during impact and the size of the feed powder (i.e., the size of the primary particles in this study), which was consistent with the observation from physical experiments. Two quantities were calculated from the DEM simulations: the number of fragments p and the fraction of fines z for each breakage event which were then used as input parameters for population balance models (PBM) to develop a DEM–PBM modeling framework. Comparision with published experimental data shows that the developed DEM‐PBM model is a promising tool for analysing ribbon milling, but all breakage mechanisms involved need to to considered in order to achieve an accurate prediction. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3692–3705, 2017  相似文献   

11.
Caffeine (CAF) is the most commonly consumed stimulant and frequently detected emerging pollutant in influents and effluents of wastewater treatment plants (WWTP) and surface waters. Acid‐activated ferrate(VI) (FeVI , Fe(VI)) oxidizes CAF in water in seconds to minutes at three times lower molar ratio of Fe(VI) to CAF than oxidative transformation observed in hours by nonactivated Fe(VI) (8.0 vs. 25.0). CAF oxidation by acid‐activated Fe(VI) is not affected by ionic constituents of water. Organic components of natural organic matter (NOM) and secondary effluent wastewater (SE) decrease efficiency of CAF transformation. However, acid‐activated Fe(VI) could mineralize other organics present in both NOM and SE as indicated by the dissolved organic carbon (DOC) removal. Comparatively, no mineralization was seen without activation of Fe(VI). Four oxidized products of CAF were identified by a liquid chromatography high resolution mass spectrometry technique. The reaction pathways of the oxidation of CAF by activated Fe(VI) have been proposed. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

12.
The deposition pattern of elongated inertial fibers in a vertical downward turbulent channel flow is predicted using large eddy simulation and Lagrangian particle tracking. Three dominant fibers deposition mechanisms are observed, namely, diffusional deposition for small inertial fibers, free‐flight deposition for large inertial fibers, and the interception mechanism for very elongated fibers. The fibers are found to exhibit orientation anisotropy at impact, which is strongly dependent on the fiber elongation. An increase in the fiber elongation increases the wall capture efficiency by the interception mechanism. The diffusional deposition mechanism is shown to dominate for fibers with large residence time, , in the accumulation zone and small deposition velocities, , while the free‐flight mechanism governs deposition for fibers with small and large . This study describes how particles deposit on a surface and, ultimately for many practical applications, how such deposition may promote fouling. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1451–1465, 2017  相似文献   

13.
The pressure drop, , across a redox flow battery is linked to pumping costs and energy efficiency, making fluid properties of the electrolyte important in scale‐up operations. The at diverse platinized titanium electrodes in Ce‐based redox flow batteries is reported as a function of mean linear electrolyte velocity measured in a rectangular channel flow cell. Darcy's friction factor and permeability vs. Reynolds number are calculated. Average permeability values are: 7.10 × 10?4 cm2 for Pt/Ti mesh, 4.45 × 10?4 cm2 for Pt/Ti plate + turbulence promoters, 1.67 × 10?5 cm2 for Pt/Ti micromesh, and 1.31 × 10?6 cm2 for Pt/Ti felt. The electrochemical volumetric mass transport coefficient, , is provided as a function of . In the flow‐by configuration, Pt/Ti felt combines high values with a relatively high , followed by Pt/Ti micromesh. Pt/Ti mesh and Pt/Ti plate gave a lower but poorer electrochemical performance. Implications for cell design are discussed. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1135–1146, 2018  相似文献   

14.
The effect of suction flow on the mass transfer coefficient of tubular ultrafiltration membranes, in particular that under a high‐flux condition, was studied. We pointed out that is proportional to under turbulent conditions, and that the proportional constant, b, exceeds 0.023 when the effect of suction flow is not negligible. We conducted the velocity variation method using ultrafiltration membranes with MWCOs of 20k and 100k and dextrans having molecular weights of 40,000 and 70,000 at the conditions, where exceeded . We demonstrated that the effect of suction flow includes not only flux but also the diffusion coefficient of solute, and that the ratio of the flux to the diffusion coefficient, expressed as , is an important index. Finally, we concluded that , when is smaller than , giving the Deissler equation itself, and that , when exceeds . © 2017 American Institute of Chemical Engineers AIChE J, 64: 1778–1782, 2018  相似文献   

15.
The dynamics of drop‐on‐demand (DoD) droplet formation and subsequently impact on the solid substrate are investigated using a three‐dimensional (3‐D) multirelaxation‐time (MRT) pseudopotential lattice Boltzmann (LB) model. The wettability of nonideal nozzle plate and solid substrate is modeled by a geometric scheme within the LB framework. The dynamics of droplet formation are explored in a range of the inverse of Ohnesorge number , , and , and the Reynolds number , , and . For , no satellite droplet is observed and the wettability of nozzle plate greatly influences the velocity and length of jetting fluids. For , the filament breakup and recombination are observed. The moment of filament breakup is delayed with advancing contact angle increasing. For with , the primary and satellite droplets could not be recombined with and which agree with the literature. Whereas with , the recombination occurs. The dynamics of subsequent oscillating droplet impact on the substrate are similar to that of equilibrium droplet which could obtain high‐resolution printed features. Consequently, considering with large and numbers, the printable range could be extended which could help increase the printing frequency and boost the production outputs of inkjet printing. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2837–2850, 2018  相似文献   

16.
Rates of mass and heat transfer at vibrating helical coils were studied by the electrochemical technique with the object of using helical coils as heat exchanger/reactor for conducting liquid–solid diffusion controlled reactions. Variables studied were frequency and amplitude of vibration, tube diameter, and superimposed axial flow velocity. The data for vibrating coil (batch reactor) were correlated for 59 < < 4965; Sc = 2314 by the equation: The data were found to be consistent with the analogy model. For vibrated helical coils with superimposed axial flow, the data were correlated by the equation: Importance of the present results in the design and operation of heterogeneous reactors used to conduct diffusion controlled exothermic reactions involving heat sensitive materials was pointed out. Also the importance of the present results in the design and operation of shell and helical tube heat exchangers of improved performance was highlighted. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3141–3149, 2017  相似文献   

17.
Model‐based analysis and optimization of pressure retarded osmosis (PRO) for power generation is focused. The effects of membrane properties (hydraulic permeability and mass‐transfer characteristics), design conditions (inlet osmotic pressures, inlet flows, and membrane area) and operating condition (applied pressure) on power density and efficiency are systematically investigated. A dimensionless design parameter , originally developed in analysis and optimization of reverse osmosis, is used to quantify the effect of dilution in draw solution (DS) as water permeates through membrane. An optimization method is developed to maximize PRO performance. It is shown that dilution and concentration polarization significantly reduce the maximum power density, and the optimal shifts away from . Moreover, power density and efficiency follow opposite trends when varying process conditions including DS flow rate and membrane area. Enhancing membrane properties is crucial to improve the economic feasibility of PRO. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1233–1241, 2015  相似文献   

18.
Palladium‐based membranes are currently the most advanced membranes for hydrogen separation and are on the verge of practical application. However, the search for alternative membranes continues in an effort to lower their cost and susceptibility to poisons. Here for the first time we report a novel sandwiched liquid metal membrane (SLiMM) for hydrogen separation. Permeation experiments indicate that the Ga/SiC SLiMM has a permeability of at 500°C, which is 35 time higher than that for Pd under similar conditions. This promises a potential for application of SliMM in hydrogen purification. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1483–1488, 2017  相似文献   

19.
Maximum effective hydrodynamic stress, , responsible for the breakup of aggregates with size comparable to Kolmogorov eddies, was experimentally determined in an aerated stirred tank. The proposed method is based on the measurement of the maximum stable aggregates size consisting of poly(methyl methacrylate) nanoparticles. The fractal aggregates were broken under various operating conditions in an aerated stirred tank and calibrated with known flow conditions using contracting nozzles to convert the measured aggregate sizes into hydrodynamic stress. It was found that can vary substantially among studied conditions and its magnitude depends on the controlling mechanism including gas jet during bubble formation, bubble rise, bubble burst at the gas–liquid interface or the turbulence generated by the impeller. The measured values are in good agreement with literature data which supports the applicability of this method to characterize the maximum effective hydrodynamic stress in complicated multiphase flow. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1735–1744, 2015  相似文献   

20.
We show that ultrasound can provide time‐resolved measurements of the size distribution and the concentration of bubbles in a liquid. The potential of the technique is demonstrated by following disappearance of bubbles having an average radius of 20 μm with a 10 ms time resolution. We show that our technique can detect small concentrations of bubbles, with a large spectrum of accessible bubble radii (from 80 nm to 40 μm for a gas volume fraction of ), and with a sub‐millisecond time resolution. This new technique could be a valuable tool for investigating rapid processes such as nucleation or dissolution of bubbles. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4666–4672, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号