首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics of a periodically operated packed bed subjected to column oscillations and obliquity was studied. Electrical capacitance tomography (ECT) and capacitance wire mesh sensors were employed to measure the local instantaneous liquid saturation in stationary slanted and moving packed beds, respectively. A swell simulator with six‐degree‐of‐freedom motions was applied to emulate the behavior of floating packed beds. The results revealed that column inclination from the vertical position considerably decayed liquid waves excited by different cyclic operation strategies. However, ON–OFF liquid and gas/liquid alternating cyclic operations showed an attempt to conserve wave identity in the slanted bed and to decrease phase maldistribution resulting from bed inclination. It was also found that symmetric and non‐symmetric split ratios of ON–OFF liquid cyclic mode were able to noticeably decrease fluid maldistribution in the oscillating packed bed. This study opens up possible prospects for process intensification of floating packed bed reactors and contactors. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4157–4172, 2016  相似文献   

2.
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017  相似文献   

3.
The influence of tortuosity and fluid volume fractions on trickle‐flow bed performance was analyzed. Hydrodynamics of the gas‐liquid downward flow through trickle beds, filled with industrial trilobe catalysts, were investigated experimentally and numerically. The pressure drop and liquid holdup were measured at different gas and liquid velocities and in two different loading methods, namely, sock and dense catalyst loading. The effect of sharp corners on hydrodynamic parameters was considered in a bed with rectangular cross section. The reactor was simulated, considering a three‐phase model, appropriate porosity function, and interfacial forces based on the Eulerian‐Eulerian approach. Computational fluid dynamics (CFD) simulation results for pressure drop and liquid holdup agreed well with experimental data. Finally, the velocity distribution in two types of loading and the effect of bed geometry in CFD results demonstrated that pressure drop and liquid holdup were reduced compared to a cylindrical one due to high voidage at sharp corners.  相似文献   

4.
Experimental Observations on average pulse velocity and frequency in concurrent gas‐liquid (down) flow through randomly packed beds are used to extract constitutive relations for the gas‐liquid interaction and mean curvature terms that appear in a recently proposed volume‐averaged two‐fluid model for bubbly flow. The proposed closures lead to a reasonably quantitative prediction of the average pressure drop and liquid saturation under bubbly flow conditions and in the near pulse regime. In addition, the proposed closures provide realistic estimates for the location of the bubble‐to‐pulse transition in microgravity and in 1g down‐flow and predict the disappearance of the bubbly flow pattern at low liquid fluxes in 1g down‐flow. © 2016 American Institute of Chemical Engineers AIChE J, 63: 812–822, 2017  相似文献   

5.
The effect of inclination angle of a packed bed on its corresponding gas–liquid flow segregation and liquid saturation spatial distribution was measured in co‐current descending gas–liquid flows for varying inclinations and fluid velocities, and simulated using a two‐phase Eulerian computational fluid dynamics framework (CFD) adapted from trickle‐bed vertical configuration and based on the porous media concept. The model predictions were validated with our own experimental data obtained using electrical capacitance tomography. This preliminary attempt to forecast the hydrodynamics in inclined packed bed geometries recommends for the formulation of appropriate drag force closures which should be integrated in the CFD model for improved quantitative estimation.  相似文献   

6.
A model based on two‐phase volume‐averaged equations of motion is proposed to examine the gravity dependence of the bubble‐to‐pulse transition in gas‐liquid cocurrent down‐flow through packed beds. As input, the model uses experimental correlations for the frictional pressure drop under both normal gravity conditions and in the limit of vanishing gravity, as well as correlations for the liquid‐gas interfacial area per unit volume of bed in normal gravity. In accordance with experimental observations, the model shows that, for a given liquid flow, the transition to the pulse regime occurs at lower gas‐flow rates as the gravity level or the Bond number is decreased. Predicted transition boundaries agree reasonably well with observations under both reduced and normal gravity. The model also predicts a decrease in frictional pressure drop and an increase in total liquid holdup with decreasing gravity levels. © 2013 American Institute of Chemical Engineers AIChE J 60: 778–793, 2014  相似文献   

7.
The pressure drop and liquid hold-up for the G-L cross/counter-current flow in a packed column with a novel internal was simulated using a Eulerian/Eulerian two-fluid model solved by a commercial CFD software CFX4.4. Simulation results are in good agreement with the experimental data of pressure drop. The internal significantly increases the gas radial velocity and lower the gas axial velocity, which lowers the pressure drop and improves operational flexibility. To minimize bypass flow caused by the internal, optimum baffle thickness and width of the internal's passage are proposed.  相似文献   

8.
The necessity for a validated computational fluid dynamics (CFD)-based model to deepen our understanding about the complex hydrodynamics of gas–liquid flows in oscillating porous media has driven this experimental and simulation work. A transient three-dimensional Euler–Euler porous media CFD model using moving reference frame and sliding mesh techniques was applied to elucidate the dynamic features of gas–liquid flows of cocurrent downflow packed beds subject to tilts and oscillations reminiscent of sea conditions. Incorporation of capillary and mechanical dispersion forces besides interphase momentum exchange terms in the CFD model to achieve reliable predictions was evaluated with respect to experimental data acquired by capacitance wire-mesh sensors and differential pressure transmitter. In the light of the validated CFD model, a detailed sensitivity analysis was performed to address the interrelations between hydrodynamic parameters, influence of fluid properties and packing size on the model predictions, and additional contribution of column oscillations on multiphase dynamics. © 2018 American Institute of Chemical Engineers AIChE J, 65: 385–397, 2019  相似文献   

9.
A three-dimensional CFD model for simulating two-phase flow in trickle-bed reactors (TBRs) is presented. Based on porous media concept, a two-phase Eulerian model (rather than computationally demanding traditional three-phase Eulerian model) describing the flow domain as porous region is presented to understand and forecast the liquid maldistribution in TBRs under cold-flow conditions. The drag forces between phases have been accounted by employing the relative permeability concept [Sàez, A. E., Carbonell, R. G., 1985. Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. A.I.Ch.E. Journal 31, 52-62].The model predictions are validated against experimental data reported in literature, notably using the liquid distribution studies of Marcendelli [1999. Hydrodynamique, Transfert de Chaleur Particule-Fluide et Distribution des phases dans les Reacteurs a lit Fixe a Ecoulement a Co-courant Descendant de Gaz et de Liquide. Doctoral Thesis. INPL, Nancy, France]. Various distributor configurations reported therein have been recreated in the CFD model and sensitivity studies have been performed. Good agreement is obtained between the reported experimental results and this proposed first-principle based CFD model.Finally, the concept of distribution uniformity is discussed and applied to the CFD model predictions. The CFD model is subjected to a systematic sensitivity study in order to explore better liquid distribution alternatives.  相似文献   

10.
With computational fluid dynamics (CFD) it is possible to get a detailed view of the flow behaviour of the fluidized beds. A profound and fundamental understanding of bed dynamics such as bed pressure drop, bed expansion ratio, bed fluctuation ratio, and minimum fluidization velocity of homogeneous binary mixtures has been made in a semi‐cylindrical fluidized column for gas–solid systems, resulting in a predictive model for fluidized beds. In the present work attempt has been made to study the effect of different system parameters (viz., size and density of the bed materials and initial static bed height) on the bed dynamics. The correlations for the bed expansion and bed fluctuations have been developed on the basis of dimensional analysis using these system parameters. Computational study has also been carried out using a commercial CFD package Fluent (Fluent, Inc.). A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. CFD simulated bed pressure drop has been compared with the experimental bed pressure drops under different conditions for which the results show good agreements.  相似文献   

11.
Rotating packed beds (RPBs) are ideal candidates for CO2 removal from offshore natural gas due to their good mass transfer performance and significant volume savings. This article proposes an Eulerian multi-fluid approach to simulate the gas–liquid flow in RPBs. Three new multiphase drag force models are constructed based on single-phase drag force models for wire mesh packings. Based on the Eulerian multi-fluid approach, a new RPB simulation framework is developed. The predicted results using the new simulation framework with the new drag force models are compared with the experimental data. When using the Kołodziej model and the modified Kołodziej model, the predicted overall liquid holdup shows good agreement with the experimental data with errors less than 20%. In addition, the pressure drop predicted by these three models are reasonable compared with the experimental data. This work lays a foundation for RPB simulation of gas–liquid flow using Eulerian multi-fluid approach.  相似文献   

12.
Computational fluid dynamics (CFD) was used to simulate the effect of sparger construction in gas holdup and liquid axial velocity in a shallow bubble column reactor for the air‐water system. Model parameters were evaluated in 2‐ and 3‐D simulations by using a two‐fluid model and the standard k‐? turbulence model. The Eulerian‐Eulerian approach was employed to predict the height of column that is affected by the sparger. It was found that increasing the number of orifices in the sparger increases the total gas holdup. Moreover, each orifice causes an increase in the circulation and mixing of liquid in the column. The results of the simulations follow the trends observed in the findings of Dhotre and Joshi [1].  相似文献   

13.
A phenomenological model based on the generalization of the single‐phase Forchheimer equation was recently proposed for predicting pressure drop and phase saturations in gas–liquid co‐current horizontal and downward high‐pressure packed beds. Here, we extend the model to packed‐bubble (co‐current upflow) and trickle‐bed operation using phase saturation power laws similar to Corey relative permeabilities. The power‐law exponents were fitted using a wide pressure gradient and liquid saturation databank in co‐current up/downward packed‐bed flows. It was found that this approach, as well as other in the literature developed for down‐flow reactors apply also to upward flows; the prediction accuracy was comparable for both flow directions to existing literature approaches. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
A general theoretical model is presented to analyze the steady‐state decomposition process of liquid monopropellants in packed beds for thruster systems. Additionally, an experiment studying the decomposition of liquid hydrazine in a packed bed is used to validate this model. The liquid droplet evaporation rate is determined through calculating the gas‐liquid mass transfer for the mixture temperatures lower than the liquid propellant boiling point and solving the gas‐liquid or liquid‐solid heat transfer equations at the temperature exceeding the boiling point. The process of liquid propellant decomposition in packed beds are simulated based on the Naive–Stokes equation for the mixture model integrated with the developed liquid evaporation rate, in which both the heterogeneous catalytic reaction coupled with the diffusion of reactants in the pore of catalyst, and the homogenous decomposition reactions are considered. The calculated results for the axial distribution of the temperature are in good agreement with the experimental data. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1064–1080, 2015  相似文献   

15.
A gas–liquid Eulerian computational fluid dynamics (CFD) model coupled with a population balance equation (PBE) was presented to investigate hydrodynamics of an air–water bubble column (1.8 m in height and 0.1 m in inner diameter) under elevated pressure in terms of pressure drop, gas holdup, mean bubble size, and bubble surface area. The CFD-PBE model was modified with three pressure correction factors to predict both the total gas holdup and the mean bubble size in the homogeneous bubbly flow regime. The three correction factors were optimized compared to experimental data. Increasing the pressure led to increasing the density, reducing the bubble size, and increasing the gas holdup. The bubble size distribution moved toward a smaller bubble size, as the pressure increased. The modified CFD-PBE model validated with experimental data and empirical models represented well hydrodynamics of the bubble column at P = 0.1, 1.5, and 3.5 MPa.  相似文献   

16.
17.
In this study, multiphase Eulerian computational fluid dynamics (CFD) modelling is developed to predict the hydrodynamics, mass transfer, and chemical absorption of CO2 using a monoethanolamine (MEA) solution in a structured packed column. First, the hydrodynamic simulation of liquid dispersion in a structured packed bed using a two-dimensional CFD is performed. The simulation results of the radial distribution of the liquid holdup are compared with the literature experimental data. The model prediction matches the experimental data at the top position of the column, whereas a slight deviation is found at the bottom position of the column. Using a validated CFD model, the reactive mass transfer is modelled to study CO2 capture in a structured packed column with Mellapak 500.X. The model results are compared to the literature experimental results of CO2 mole fractions along the height of the column. It is found that the model results match the experimental findings. Furthermore, CFD modelling is extended to investigate the influence of operating conditions such as gas and liquid velocities on CO2 removal efficiency. The present CFD model demonstrates the porous media approach for reactive absorption of CO2 in a structural packed bed.  相似文献   

18.
A gas‐liquid Eulerian porous media computational fluid dynamics (CFD) model was developed for an absorber with structured packing to remove CO2 from natural gas by mono‐ethanol‐amine (MEA). The three‐dimensional geometry of the amine absorber with Mellapak 500.X was constructed to investigate the effect of the tilting and motion experienced on ships and barges for offshore plants. The momentum equation included porous resistance, gas‐liquid momentum exchange, and liquid dispersion to replace structured‐packing by porous media. The mass equation involved mass transfer of CO2 gas into MEA solution, and one chemical reaction. Parameters of the CFD model were adjusted to fit experimental data measured in the CO2‐MEA system. As the tilting angle increased, the liquid holdup and effective interfacial area decreased and CO2 removal efficiency was lowered. The uniformity of liquid holdup deteriorated by 10% for a 3° static tilting, and a rolling motion with 4.5° amplitude and 12 s period, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4412–4425, 2015  相似文献   

19.
The hydrodynamic behavior of gas‐liquid downflow in vertical, inclined, and oscillating packed beds related to offshore floating applications was analyzed by means of three‐dimensional unsteady‐state two‐fluid simulations. Angular oscillations of the column between two angled symmetrical positions and between vertical and inclined position were considered while bed non‐uniformity was described using radial porosity distributions. For vertical and slightly inclined columns, two‐phase flow was concentrated in the core area of the bed. However, the two‐phase flow was predicted to deviate significantly from axial symmetry at higher inclinations with prominent liquid accumulation in the bottommost reactor cross‐sectional area. Oscillating packed beds unveiled complex reverse secondary flows radially and circumferentially resulting in oscillatory patterns of liquid holdup and pressure drop whose amplitude and propagation frequency were affected by column inclination angle and travel time between vertical and angled positions. © 2015 American Institute of Chemical Engineers AIChE J, 62: 916–927, 2016  相似文献   

20.
Although separating CO2 from flue gas with ionic liquids has been regarded as a new and effective method, the mass transfer properties of CO2 absorption in these solvents have not been researched. In this paper, a coupled computational fluid dynamic (CFD) model and population balance model (PBM) was applied to study the mass transfer properties for capturing CO2 with ionic liquids solvents. The numerical simulation was performed using the Fluent code. Considering the unique properties of ionic liquids, the Eulerian‐Eulerian two‐flow model with a new drag coefficient correlation was employed for the gas‐liquid fluid dynamic simulation. The gas holdup, interfacial area, and bubble size distribution in the bubble column reactor were predicted. The mass transfer coefficients were estimated with Higbie's penetration model. Furthermore, the velocity field and pressure field in the reactor were also predicted in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号