首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double T‐junction microchannel is a classical microstructured chemical device used to generate gas/liquid/liquid three‐phase microflows. An experimental study that focused on the three‐phase flow phenomena and bubble/droplet generation rules in a double T‐junction microchannel was introduced. Based on the published knowledge of gas/liquid and liquid/liquid two‐phase microflows, new flow patterns were carefully defined: bubble cutting flow, spontaneous break‐up and bubble cutting coupling flow, and bubble/droplet alternate break‐up flow. According to the classical correlations of bubble and droplet volumes and their generation frequency ratio, the operating criteria for creating different three‐phase flow patterns were established and a model for the dimensionless average bubble and droplet volumes in the three‐phase microflows was developed. These various three‐phase microflows have great application potential in material science and flow chemistry synthesis. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1722–1734, 2015  相似文献   

2.
在诸如天然气、化工、冶金、电力等许多工业过程中广泛存在气液两相流,传统上采用分离罐或旋风分离器等分离两相流,不仅设备成本高、易泄漏,而且维护保养和更新都不方便。T形管分离器具有结构简单、集约、经济、安全、维修更新方便等优点,但缺点是简单T形管的分离效率较低,新型复合T形管是对简单T形管的一种改进,期望能提高两相的分离效率。以空气一水为两相流工作介质,用主管水平侧支管垂直向上的简单T形管和复合T形管作为两相流动的分离器,在层状流和塞状流条件下进行两相流分离实验。结果表明,无论在层状流还是在塞状流条件下,复合T形管气液两相的分离效率都比简单T形管有了显著的提高,增加复合T形管的连接管数,能进一步提高分离效率,一般在层状流时连接管数为5管以上的复合T能完全分离气液两相;而流型进入混合程度较高的塞状流时,采用连接管为5管以上的复合T也能完全分离气液两相流;相同流型下,增加气体或液体的流速,对复合T形管分离效果不利,最大分离效率下降。  相似文献   

3.
It was observed in the experimental investigations that the concurrent upflow of air‐Monoethanol amine system through the packed bed gave higher pressure drop in bubble flow regime than the air‐water system. But when the flow regime changed to spray flow, air‐water system showed higher pressure drop than the other. This phenomenon was observed for the two column packing used in this study. An attempt is made to explain this phenomenon.  相似文献   

4.
This paper investigates oil–water two‐phase flows in microchannels of 793 and 667 µm hydraulic diameters made of quartz and glass, respectively. By injecting one fluid at a constant flow rate and the second at variable flow rate, different flow patterns were identified and mapped and the corresponding two‐phase pressure drops were measured. Measurements of the pressure drops were interpreted using the homogeneous and Lockhart–Martinelli models developed for two‐phase flows in pipes. The results show similarity to both liquid–liquid flow in pipes and to gas–liquid flow in microchannels. We find a strong dependence of pressure drop on flow rates, microchannel material, and the first fluid injected into the microchannel.  相似文献   

5.
Gas–aqueous liquid–oil three‐phase flow was generated in a microchannel with a double T‐junction. Under the squeezing of the dispersed aqueous phase at the second T‐junction (T2), the splitting of bubbles generated from the first T‐junction (T1) was investigated. During the bubble splitting process, the upstream gas–oil two‐phase flow and the aqueous phase flow at T2 fluctuate in opposite phases, resulting in either independent or synchronous relationship between the instantaneous downstream and upstream bubble velocities depending on the operating conditions. Compared with two‐phase flow, the modified capillary number and the ratio of the upstream velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. These results provide an important guideline for designing microchannel structures for a precise manipulation of gas–liquid–liquid three‐phase flow which finds potential applications among others in chemical synthesis. © 2017 American Institute of Chemical Engineers AIChE J, 63: 376–388, 2018  相似文献   

6.
The prediction of liquid–liquid two‐phase flow at a horizontal dividing T‐junction is re‐investigated, focusing on a stratified orientation of the liquids. Kerosene (as oil) and water as the test fluids of previous studies are used to predict the distribution of oil and water in a 0.025‐m diameter pipe and tee. In addition to the previously studied models, attempts are made to predict the split for liquid–liquid systems by the already known energy minimization. The earlier model, formulated from geometrical considerations and force balance resulting from centripetal as well as inertial forces, is refurbished by the addition of energy minimization for the calculation of phase depth.  相似文献   

7.
8.
Devising a new mechanistic method to predict gas–liquid interface shape in horizontal pipes is concerned in this article. An experiment was conducted to find the pressure gradients of air–water flow through a 1‐in. pipe diameter. Comparing results of model with some experimental data available in the literature demonstrates that the model provides quite better predictions than existed models do. This model also predicts flow regime transition from stratified to annular flow better than Apparent Rough Surface and Modified Apparent Rough Surface models for both 1‐ and 2‐in. pipe diameters. The model also leads to reliable predictions of wetted wall fraction experimental data. Although one parameter of new model was evaluated based on air–water flow pressure loss experimental data for 1 in. pipe, it was considerably successful to predict pressure drop, liquid holdup, stratified‐annular transition and wetted wall fraction for other gas–liquid systems and pipe diameters. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1043–1053, 2015  相似文献   

9.
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017  相似文献   

10.
11.
The dependency of pressure drop and liquid holdup on phase velocities, geometry of the column and packing materials as well as on the physical properties have been analyzed. Our experimental data (825 data points obtained using four liquid systems and three different particles) along with those of the available literature (776 data point from five different sources) were used for the analysis. The applicability and the limitations of the literature correlations were evaluated using the available data. Based on the analysis, new correlations for the estimation of pressure drop and liquid holdup, valid for low and high interaction regimes have been developed using the available data, with a wide range of variables. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
Flow patterns of liquid‐liquid two‐phase fluids in a new helical microchannel device were presented in this paper. Three conventional systems were considered: kerosene‐water, n‐butyl acetate‐water, and butanol‐water. Six different flow patterns, slug flow, continuous parallel flow, discontinuous deformation parallel flow, discontinuous deformation parallel‐droplet flow, droplet‐slug flow, and filiform‐droplet flow, were observed. The influence of interfacial tension, microchannel structure, and rotation rate on two‐phase flow patterns were studied, and a universal flow pattern map was presented and discussed. The systems without mass transfer (0.1 g/g (10 %) tri‐n‐butyl phosphate (TBP)‐water, 0.2 g/g (20 %) TBP‐water, and 0.8 g/g (80 %) TBP‐water) and the system with mass transfer (0.8 g/g (80 %) TBP‐0.62 g/g (62 %) H3PO4) were used to verify the validity of the proposed universal flow pattern map in predicting flow patterns. The results showed that the former compared with the latter can be predicted more accurately by the universal flow pattern map.  相似文献   

13.
14.
Gas holdup has been measured in an 83‐mm diameter, 2.2‐m high column at high gas superficial velocities — 0.22 to 2.7 m/s — and at liquid (water) superficial velocities of 0 to 0.47 m/s, by means of a differential pressure transducer. The equation of Hills (1976) based on the slip velocity gives good predictions of the gas holdup for 0.1 ≤ Eg ≤ 0.4. However, the holdups predicted by this approach are considerably higher than the experimental values at gas velocities high enough that Eg > 0.4. Other equations from the literature are also shown to be inadequate. The new data and earlier data at high gas velocities are therefore correlated with a new dimensional equation for Ul ≤ 0.23 m/s.  相似文献   

15.
New constitutive relations for filtered two‐fluid models (TFM) of gas‐particle flows are obtained by systematically filtering results generated through highly resolved simulations of a kinetic theory‐based TFM. It was found in our earlier studies that the residual correlations appearing in the filtered TFM equations depended principally on the filter size and filtered particle volume fraction. Closer inspection of a large amount of computational data gathered in this study reveals an additional, systematic dependence of the correction to the drag coefficient on the filtered slip velocity, which serves as a marker for the extent of subfilter‐scale inhomogeneity. Furthermore, the residual correlations for the momentum fluxes in the gas and particle phases arising from the subfilter‐scale fluctuations are found to be modeled nicely using constitutive relations of the form used in large‐eddy simulations of single‐phase turbulent flows. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3265–3275, 2013  相似文献   

16.
Flow distribution during gas–liquid–liquid upflow through a vertical pipe is investigated. The optical probe technique has been adopted for an objective identification of flow patterns. The probability density function (PDF) analysis of the probe signals has been used to identify the range of existence of the different patterns. Dispersed and slug flow have been identified from the nature of the PDF, which is bimodal for slug flow and unimodal for dispersed flow. The water continuous, oil continuous, and emulsion type flow distributions are distinguished on the basis of the PDF moments. The method is particularly useful at high flow rates where visualization techniques fail. Based on this, a flow pattern detection algorithm has been presented. Two different representations of flow pattern maps have been suggested for gas–liquid–liquid three phase flow. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3362–3375, 2014  相似文献   

17.
The article is devoted to a theoretical analysis of counter‐current gas‐liquid wavy film flow between vertical plates. We consider two‐dimensional nonlinear waves on the interface over a wide variation of parameters. The main interest is to analyse the wave structure at the parameter values corresponding to the onset of flooding observed in experiments. We use the Navier‐Stokes equations in their full statement to describe the liquid phase hydrodynamics. For the gas phase equations, we use two models: (1) the Navier‐Stokes system and (2) the simplified Benjamin‐Miles approach where the liquid phase is a small disturbance for the laminar or turbulent gas flow. With the superficial gas velocity increasing and starting from some value of the velocity, the waves demonstrate a rapid decreasing of both the minimal film thickness and the phase wave velocity. We obtain a region of the gas velocity where we have two solutions at one set of the problem parameters and where the flooding takes place. Both the phase wave velocity and the minimal film thickness are positive numbers at such values of the velocity. We calculate the flooding point dependences on the liquid Reynolds number for two different liquids. The wave regime corresponding to the flooding point demonstrates negative u‐velocities in the neighbourhood of the interface near the film thickness maximum. At smaller values of the superficial gas velocity, the negative u‐velocities take place in the neighbourhood of the film thickness minimum. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

18.
Bubble breakup with permanent obstruction in an asymmetric microfluidic T‐junction is investigated experimentally. The breakup process of bubbles can be divided into three stages: squeezing, transition, and pinch‐off stages. In the squeezing stage, the thinning of the bubble neck is mainly controlled by the velocity of the fluid flowing into the T‐junction, and the increase of the liquid viscosity can promote this process. In the transition stage, the minimum width of bubble neck decreases linearly with time. In the pinch‐off stage, the effect of the velocity of the fluid flowing into the T‐junction on the thinning of the bubble neck becomes weaker, and the increase of the liquid viscosity would delay this process. The evolution of the minimum width of the bubble neck with the remaining time before the breakup can be scaled by a power–law relationship. The bubble length has little influence on the whole breakup process of bubbles. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1081–1091, 2015  相似文献   

19.
Experimental Observations on average pulse velocity and frequency in concurrent gas‐liquid (down) flow through randomly packed beds are used to extract constitutive relations for the gas‐liquid interaction and mean curvature terms that appear in a recently proposed volume‐averaged two‐fluid model for bubbly flow. The proposed closures lead to a reasonably quantitative prediction of the average pressure drop and liquid saturation under bubbly flow conditions and in the near pulse regime. In addition, the proposed closures provide realistic estimates for the location of the bubble‐to‐pulse transition in microgravity and in 1g down‐flow and predict the disappearance of the bubbly flow pattern at low liquid fluxes in 1g down‐flow. © 2016 American Institute of Chemical Engineers AIChE J, 63: 812–822, 2017  相似文献   

20.
This work focuses on the dispersion of micromonodispersed droplets and bubbles in the capillary embedded T‐junction microfluidic devices. The effects of the microchannel structure, operating conditions, and physical properties on the dispersion rules were carefully investigated. It was found that the extended capillary could greatly affect the dispersion rules, which was favorable for reducing the dispersed size. The dispersed size was mainly dominated by the Ca number, and the effects of dispersed phase flow rate and viscosity ratio of the two phases were also very important. The dispersion mechanism and size rules in the capillary embedded microfluidic devices were discussed seriously by comparing the similarities and differences of the liquid/liquid and gas/liquid dispersion processes. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号