首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel inorganic hollow fiber membrane reactor (iHFMR) has been developed and applied to the catalytic dehydrogenation of propane to propene. Alumina hollow fiber substrates, prepared by a phase inversion/sintering method, possess a unique asymmetric structure that can be characterized by a very porous inner surface from which finger-like voids extend across ∼80% of the fiber cross-section with the remaining 20% consisting of a denser sponge-like outer layer. In contrast to other existing Pd/Ag composite membranes, where an intermediate γ-Al2O3 layer is often used to bridge the Pd/Ag layer and the substrate, the Pd/Ag composite membrane prepared in this study was achieved by coating the Pd/Ag layer directly onto the outer surface of the asymmetric substrate. After depositing submicron-sized Pt (0.5 wt %)/γ-alumina catalysts in the finger-like voids of the substrates, a highly compact multifunctional iHFMR was developed. Propane conversion as high as 42% was achieved at the initial stage of the reaction at 723 K. In addition, the space-time yields of the iHFMR were ∼60 times higher than that of a fixed bed reactor, demonstrating advantages of using iHFMR for dehydrogenation reactions. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

2.
A modeling‐based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed‐bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damköhler (Da) and lower Péclet (Pe) numbers are generally helpful, but are much more beneficial with highly H2‐selective membranes rather than higher‐flux, lower‐selectivity membranes. H2‐selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade‐off between kinetics and permeation, and is effective only in a limited window. H2‐selective PBMRs will greatly benefit from the fabrication of thin (~1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J, 61: 922–935, 2015  相似文献   

3.
针对丙烷高效脱氢制丙烯的多孔膜反应器构建了无量纲数学模型并进行了模拟研究,考察了催化剂活性、透氢膜性能、操作条件对多孔膜反应器中丙烷脱氢的转化率、丙烯收率、氢气收率和纯度的影响。结果表明,移走产物氢气可以有效提升膜反应器的性能,其性能的提升程度由不同温压条件下催化剂和透氢膜性能共同决定。高活性催化剂是丙烷高效转化的基础,催化剂活性越高,膜反应器内的产氢速率越快;其次,膜的选择性和渗透通量越高,氢气的移除效率越高,可在最大程度上打破热力学平衡的限制,使反应向生成丙烯的方向移动。当多孔透氢膜的氢气渗透率在10-7~10-6 mol·m-2·s-1·Pa-1,H2/C3H8选择性达到100时,其丙烷转化率可以与Pd膜反应器内的转化率相当,但分离的氢气纯度低于Pd膜反应器。与传统的固定床反应器相比,膜反应器由于促进了化学平衡的移动,可以在较低的反应温度下获得相当高的丙烷转化率,且丙烷转化率随着反应压力的增加呈现出一个最大值。该模拟研究可为实际生产过程中膜反应器用于PDH反应的高效强化提供有益的技术指导。  相似文献   

4.
Propane dehydrogenation has been simulated for a composite membrane reactor and a microporous membrane reactor using plug‐flow reactor models, in which both were packed with Pt/Al2O3 catalyst in the tube‐side. The reaction kinetics employed in the analysis were obtained from experimental data produced in an integral fixed bed reactor with the same catalyst. Comparative studies were carried out to analyse the performances of reactors containing the different membranes in terms of contact time, flow pattern and flow rate of sweep gas, and pressure. In general, the composite membrane reactors gave the better performance for all cases investigated. © 2002 Society of Chemical Industry  相似文献   

5.
SAPO-34 hollow fiber zeolite membranes are successfully synthesized on α-Al2O3 hollow fiber ceramic substrates by secondary growth method, and used to separate H2 from a binary mixture (H2, C3H8) or ternary mixture (H2, C3H8, and C3H6) under a wide temperature range (25–600°C) with the aim of using them for propane dehydrogenation (PDH) reactions at high temperature. The results show excellent performance for H2/C3H8 and H2/ C3H8 & C3H6 separation, with high H2 permeance of 3.1 × 10−7 mol/m2/s/Pa and H2/C3H8 selectivity of 41 at 600°C. Additionally, the membrane shows stable performance for 140 hr of H2/C3H8 separation test at 600°C. The high performance of this membrane is mainly attributed to the thin (∼2 μm) zeolite layer and asymmetric-wall of the hollow fiber support. So far, this membrane offers the highest hydrogen permeation and selectivity for H2/C3H8 separation at high temperature (600°C) compared to those reported in literature.  相似文献   

6.
A membrane reactor incorporating a hollow fiber with successive parts of oxygen permeable and passivated surface segments has been developed and was used for the oxidative dehydrogenation (DH) of propane. This membrane geometry allows a controlled oxygen feeding into the reactor over its axial length. In the oxidative DH, the thermodynamic limitation of propane DH can be overcome. By using this novel hollow fiber membrane reactor with a Pt/Sn/K DH catalyst, oxygen separation and propene formation could be established even at temperatures as low as 625°C with long‐term stability. Combining the hollow fiber membrane and the DH catalyst, the highest propene selectivity of 75% was observed at a propane conversion of 26% and 625°C whereas the best propene yield of 36% was obtained at 675°C (48% propene selectivity). The performance of this reactor is evaluated by applying various reaction conditions. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

7.
张新平  周兴贵  袁渭康 《化工学报》2009,60(10):2484-2489
在丙烷脱氢制丙烯反应过程中,由于焦的沉积使催化剂活性不断降低,而且失活速度很快。本文建立了径向绝热固定床反应器丙烷脱氢 失活过程的动态模型,在Pt-Sn催化剂动力学基础上对脱氢过程进行了模拟和分析。得到了不同时刻反应器内的压力、温度、催化剂活性等的分布情况以及转化率、选择性、收率等的变化规律,并在分析反应器入口温度、流量及压力对过程影响的基础上对反应的操作条件进行了优化。  相似文献   

8.
ZSM-5 型沸石膜反应器在乙苯脱氢反应中的模式   总被引:1,自引:0,他引:1       下载免费PDF全文
引言 沸石分子筛膜是近些年发展起来的和种新型的膜分离技术[1],它是通过分子筛孔道实现分子筛分,从而得到较高的分离因数.  相似文献   

9.
丙烷脱氢制丙烯研究新进展   总被引:1,自引:1,他引:0  
介绍了丙烷催化转化制丙烯的研究状况,综述了丙烷催化脱氢制丙烯的铬系催化剂、铂系催化剂及其助剂Sn的研究进展;评述了丙烷氧化脱氢反应机理低温和高选择性的催化剂及膜反应器在丙烷脱氢反应上所具有的优越性,认为研发具有高稳定性和高透氢性能的氢分离膜,将有望能大幅度提高丙烯的收率。  相似文献   

10.
A novel reactor concept is proposed for partial oxidation reactions that combines membrane and fluid bed reactor technology in a single vessel. Air fluidizes the shell side in which both membrane tubes — charged with catalyst — and cooling coils are immersed. Oxygen transport through the membrane wall is controlled by pressure drop. Model simulations, based on the kinetics for the oxidative dehydrogenation of propane to propene, show improved performance compared to conventional fixed bed technology. The controlled oxygen addition along the axis improves propene selectivity and broadens the operating range with respect to hydrocarbon and oxygen feed rates.  相似文献   

11.
A mathematical model is presented to simulate the performance of a non-isothermal inert membrane reactor with catalytic pellets in the feed-side chamber (IMRCF). The simulation takes into account the various heat exchanges that take place inside the reactor. The model consists of the full set of partial difference equations that describe the conservation of mass, momentum, energy and chemical species, coupled with chemical kinetics and appropriate boundary conditions for the physical problem. The set of equations is solved by finite difference method. The model is applied to investigate the endothermic dehydrogenation of cyclohexane in the IMRCF, where a permselective Vycor glass membrane is used. The simulation results show that the conversion of cyclohexane for non-isothermal IMRCF at the temperature of 550 K and below is higher than the equilibrium conversion. On the contrary, when the temperature is 570 K and above, the conversion will be lower than the equilibrium conversion. The heat effects have a greater influence on the IMRCF.  相似文献   

12.
This research tests a membrane reactor, equipped with a molecular-sieve carbon membrane, using isobutane dehydrogenation on a chromia alumina catalyst as a model reaction. Most pores of the carbon membrane employed are 6- in size and previous independent transport studies show that the permeability ratio of hydrogen to isobutene is larger than 100. These features make the membrane an excellent highly selective low-cost candidate for application in a membrane reactor. The novelty of this study is in the proposed application at relatively high temperatures (450°C and 500°C); only a few studies have tested carbon membrane reactors.Two types of operation modes were studied, using either nitrogen as a sweeping gas in counter current flow or using vacuum as a driving force for membrane transport. As expected, higher conversions were achieved with decreasing feed flow rate. The conversion achieved in the counter-current flow operation method was higher than in all other modes achieving a maximum of 85% at 500°C. While this result is much higher than in the corresponding PFR, the obtained improvement is a result of nitrogen transport and dilution. The conversions obtained in the vacuum mode show modest gains above the ones received in the PFR (40% vs. 30% at 500°C). These results were compared with simulations that used the experimentally determined transport parameters.  相似文献   

13.
The dehydrogenation of methylcyclohexane (MCH) to toluene (TOL) for hydrogen production was theoretically and experimentally investigated in a bimodal catalytic membrane reactor (CMR), that combined Pt/Al2O3 catalysts with a hydrogen‐selective organosilica membrane prepared via sol‐gel processing using bis(triethoxysilyl) ethane (BTESE). Effects of operating conditions on the membrane reactor performance were systematically investigated, and the experimental results were in good agreement with those calculated by a simulation model with a fitted catalyst loading. With H2 extraction from the reaction stream to the permeate stream, MCH conversion at 250°C was significantly increased beyond the equilibrium conversion of 0.44–0.86. Because of the high H2 selectivity and permeance of BTESE‐derived membranes, a H2 flow with purity higher than 99.8% was obtained in the permeate stream, and the H2 recovery ratio reached 0.99 in a pressurized reactor. A system that combined the CMR with a fixed‐bed prereactor was proposed for MCH dehydrogenation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1628–1638, 2015  相似文献   

14.
在蒸汽活化转化(STAR)工艺中,丙烷脱氢反应产物含有大量氢气、甲烷等不凝组分,传统的高压低温液化流程,操作压力达到3.30MPa,浅冷温度-24℃,深冷温度-78℃,不仅压缩能耗高,而且氢气副产品浓度低,无法直接在炼化过程中实现利用。对此,本文提出在浅冷之后嵌入氢气膜分离单元,采用Prism-Ⅱ膜脱除反应产物中大部分氢气后再进一步增压和深冷液化。采用HYSYS对改进工艺模拟优化后得出:浅冷操作压力2.40MPa、温度-24℃,深冷操作压力3.30MPa、温度-78℃,总压缩能耗降低16.1%,氢气纯度由82.8%提高到99.0%,回收率超过85%。以350kt/a STAR工艺为例进行改进工艺的技术经济分析,最优膜面积为2680m2,总压缩功耗由6850kW降低至5750kW,节约公用工程约5.72×106CNY/a,设备折旧仅增加0.61×106CNY/a,产出氢气约1.23×108m3/a。综合考虑节能、新增设备折旧和氢气产出,年净收益增加8.7×107CNY。结果表明,膜分离改进有效地提高了STAR工艺的能效和经济性。  相似文献   

15.
The catalytic dehydrogenation of propane is equilibrium limited, strongly endothermic and normally carried out at high temperatures. The catalyst deactivates due to the laydown of carbonaceous species on the surface. This is conventionally countered by subjecting the catalyst to periodic regeneration. In commercially available processes, the catalyst time on line for a given cycle is in the order of 10–10,000 min.

In this study, the catalyst has been observed to exhibit very high activity and selectivity in the short period after regeneration. Conceptual and model development of a reactor with structured catalyst to capitalise on this beneficial early activity is presented.

The preferred reactor comprises a cylindrical block of honeycomb monolith that rotates past various feed zones, subjecting the catalyst successively to propane and regenerating gas. The exothermic nature of the regeneration reactions is used at least in part to provide heat to the endothermic dehydrogenation reaction via the regenerative heat transfer facilitated by the movement of the solid monolith. Specifically, it is noted that an oxidisible catalyst provides operating advantage due to the additional exotherms associated with the regeneration stage.

The process modelling shows the design to be feasible in terms of matching the heats of reactions and achieving high conversions, but questions are raised over its practicability from mechanical design and process stability viewpoints.  相似文献   


16.
A packed-bed catalytic ceramic membrane reactor (PBCMR) was used for the isobutane dehydrogenation reaction. The experimental results have shown that through the use of the membrane reactor one can attain better conversions and yields than in a conventional reactor operating under the same outlet pressure and temperature, and feed composition conditions.  相似文献   

17.
丙烷脱氢制丙烯催化剂烧焦过程的模型化   总被引:1,自引:1,他引:0       下载免费PDF全文
在丙烷脱氢制丙烯反应过程中,由于焦的沉积使催化剂活性不断降低,而且失活速度很快,催化剂需频繁烧焦再生。在研究了丙烷脱氢催化剂烧焦过程内外扩散影响的基础上,采用内扩散效率因子修正的均匀烧焦物理模型,建立了综合考虑内外扩散影响的绝热固定床非均相动态烧焦数学模型,用于指导反应器的设计和操作优化。通过对Cr2O3/Al2O3脱氢催化剂烧焦过程模拟,可更深入地认识烧焦过程的变化规律。  相似文献   

18.
Cr系丙烷脱氢催化剂研究进展   总被引:3,自引:1,他引:2  
综述了Cr系丙烷脱氢催化剂的研究状况,介绍了使用Cr系丙烷脱氢催化剂的工艺和催化剂脱氢机理,探讨了Cr系催化剂的活性中心和失活原因,总结了影响铬铝催化剂催化性能的因素,包括制备、载体、助剂、积炭及工艺条件,对Cr系催化剂的研究前景进行了展望。  相似文献   

19.
An industrial scale propylene production via oxidative dehydrogenation of propane(ODHP)in multi-tubular reactors was modeled.Multi-tubular fixed-bed reactor used for ODHP process,employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows.Herein,a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence ole fin over V_2O_5/γ-Al_2O_3catalyst was presented.Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions,gas process and coolant temperatures,as well as other parameters affecting the reactor performance such as pressure.Furthermore,the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%.The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined.For the single-bed reactor the optimized length of 11.96 m including 0.5m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72m for the first and 7.32 m for the second reactor were calculated.Ultimately,the use of a distributed oxygen feed with limited number of injection points indicated a signi ficant improvement on the reactor performance in terms of propane conversion and propylene selectivity.Besides,this concept could overcome the reactor runaway temperature problem and enabled operations at the wider range of conditions to obtain enhanced propylene production in an industrial scale reactor.  相似文献   

20.
为确立丙烷脱氢制丙烯工艺中低温分离单元的最佳制冷流程,采用PRO/Ⅱ8.2化工流程模拟软件,对低温分离单元进行模拟计算,考察了温度和压力对低温分离效果的影响,分析并确立了最佳分离温度和压力范围;在分离效果相同的前提下,分别比较了丙烯+乙烯级联制冷、丙烯预冷+混合制冷和丙烯预冷+富氢气膨胀制冷3种制冷流程的公用工程消耗以及各自的优缺点。结果表明:产品压缩机出口压力对分离效果影响较小,在确保下游装置能够正常操作的情况下,分离压力应尽可能低;分离温度是影响分离效果的主要因素,较为经济的分离温度为-90—-100℃;相对于其他2种流程,丙烯+乙烯级联制冷流程具有技术成熟、能耗低和操作简单等优点,更适合于丙烷脱氢制丙烯工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号