首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrodynamic behavior of gas‐liquid downflow in vertical, inclined, and oscillating packed beds related to offshore floating applications was analyzed by means of three‐dimensional unsteady‐state two‐fluid simulations. Angular oscillations of the column between two angled symmetrical positions and between vertical and inclined position were considered while bed non‐uniformity was described using radial porosity distributions. For vertical and slightly inclined columns, two‐phase flow was concentrated in the core area of the bed. However, the two‐phase flow was predicted to deviate significantly from axial symmetry at higher inclinations with prominent liquid accumulation in the bottommost reactor cross‐sectional area. Oscillating packed beds unveiled complex reverse secondary flows radially and circumferentially resulting in oscillatory patterns of liquid holdup and pressure drop whose amplitude and propagation frequency were affected by column inclination angle and travel time between vertical and angled positions. © 2015 American Institute of Chemical Engineers AIChE J, 62: 916–927, 2016  相似文献   

2.
A phenomenological model based on the generalization of the single‐phase Forchheimer equation was recently proposed for predicting pressure drop and phase saturations in gas–liquid co‐current horizontal and downward high‐pressure packed beds. Here, we extend the model to packed‐bubble (co‐current upflow) and trickle‐bed operation using phase saturation power laws similar to Corey relative permeabilities. The power‐law exponents were fitted using a wide pressure gradient and liquid saturation databank in co‐current up/downward packed‐bed flows. It was found that this approach, as well as other in the literature developed for down‐flow reactors apply also to upward flows; the prediction accuracy was comparable for both flow directions to existing literature approaches. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
A time- and space-dependent model based on the piston-dispersion-exchange model for liquid flow was developed to analyze the performance of two-phase upflow and downflow fixed bed reactors and was applied to the catalytic SO2 oxidation. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the PDE model was used to interpret the obtained RTD curves. Gas-liquid mass transfer parameters were determined by a stationary method based on the least square fit of the calculated concentration profiles in gas phase to the experimental values. It is shown that two-phase downflow fixed bed reactor performs better at low liquid flow rates, while two-phase downflow fixed bed reactor performs better at low liquid flow rates, while two-phase upflow performs better at high liquid flow rates.  相似文献   

4.
A model is proposed for cocurrent gas liquid flow through a packed bed. For a given packing, gas and liquid flow rates, we proposed that (i) liquid holdup is a function only of pressure gradient and liquid flow rate and (ii) pressure gradient is only a function of liquid holdup and gas flow rate. Equations are presented which permit the prediction of pressure gradient and liquid holdup for cocurrent upflow and cocurrent downflow in a packed bed. Predictions from the model are shown to be in reasonable agreement with the experimental observations of Turpin and Huntington.  相似文献   

5.
Gas‐liquid‐liquid slug flow in a capillary reactor is a promising new concept that allows one to incorporate gas‐liquid reaction, liquid‐liquid extraction, and facile catalyst separation in a single unit. In order to assess the performance of a gas‐liquid‐liquid slug flow reactor, it is necessary to predict the slug velocity and pressure drop to ascertain residence times and reaction rates. New empirical models for velocity and pressure drop were developed based on existing models for two‐phase gas‐liquid and liquid‐liquid slug flows, and these were validated experimentally.  相似文献   

6.
The influence of liquid maldistribution at the top of the packing on flow characteristics in packed beds of gas and liquid cocurrent downflow (trickle beds) is experimentally investigated. Particular attention is paid to the effect of gas and liquid flow rates on flow development. Tests are made in the trickling and pulsing flow regimes. A uniform, a half-blocked and a quarter-blocked liquid distributor is tested. Packings of various sizes and shapes are employed. Data are presented on pressure drop and liquid holdup as well as trickling to pulsing flow transition. Diagnosis of radial and axial liquid distribution is made by means of conductance probes. The effects of liquid foaming, bed pre-wetting, top-bed material, and blockage midway the bed on liquid distribution are also examined. Overall, liquid waves in the pulsing flow regime have a beneficial effect, promoting uniform liquid distribution in the bed cross section.  相似文献   

7.
The influence of tortuosity and fluid volume fractions on trickle‐flow bed performance was analyzed. Hydrodynamics of the gas‐liquid downward flow through trickle beds, filled with industrial trilobe catalysts, were investigated experimentally and numerically. The pressure drop and liquid holdup were measured at different gas and liquid velocities and in two different loading methods, namely, sock and dense catalyst loading. The effect of sharp corners on hydrodynamic parameters was considered in a bed with rectangular cross section. The reactor was simulated, considering a three‐phase model, appropriate porosity function, and interfacial forces based on the Eulerian‐Eulerian approach. Computational fluid dynamics (CFD) simulation results for pressure drop and liquid holdup agreed well with experimental data. Finally, the velocity distribution in two types of loading and the effect of bed geometry in CFD results demonstrated that pressure drop and liquid holdup were reduced compared to a cylindrical one due to high voidage at sharp corners.  相似文献   

8.
Milli‐scale reactors with an integrated microstructure offer a promising scale‐up approach for conventional microreactors. This study applies 3D‐printed structured porous millireactors to industrially relevant liquid‐liquid reactions. The underlying transport mechanisms are identified by quantifying interfacial heat and mass transfer. The structured reactors perform limited in Taylor flow compared to a packed‐bed reactor due to limited interfacial mass transfer. However, in stratified flow, their productivity increases significantly at a fraction of the pressure drop of a packed bed.  相似文献   

9.
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017  相似文献   

10.
A three‐dimensional unsteady‐state Eulerian multi‐fluid CFD model was developed to simulate the hydrodynamic behavior of inclined gas‐liquid cocurrent downflow packed beds under ON‐OFF liquid, ON‐OFF gas, and gas/liquid alternating cyclic operations. Validation of the CFD simulation results was performed with experimental data provided by electrical capacitance tomography imaging. Incorporation in the Eulerian multifluid CFD model of capillary pressure and mechanical dispersion force was essential to accurately capture the transient spatial heterogeneities arising in tilted packed beds under different cyclic modulation strategies. The applied CFD model was able to satisfactorily predict the values of liquid holdup and pressure drop as well as the morphological characteristics of the traveling waves inside the bed for the examined flow modulations. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4161–4176, 2017  相似文献   

11.
It was observed in the experimental investigations that the concurrent upflow of air‐Monoethanol amine system through the packed bed gave higher pressure drop in bubble flow regime than the air‐water system. But when the flow regime changed to spray flow, air‐water system showed higher pressure drop than the other. This phenomenon was observed for the two column packing used in this study. An attempt is made to explain this phenomenon.  相似文献   

12.
The effect of reactor geometry and bed dilution on the extent of gas oil hydrodesulfurization was tested by conducting hydrodesulfurization experiments in two laboratory reactors of different scale with non-diluted and diluted beds in ascending flow. The superficial gas and liquid velocities and the catalyst bed height were kept constant while the main difference between the two reactor scales was the reactor diameter. The diluted bed of the mini-reactor showed the best performance and its results were identical in upflow and downflow mode. The differences between the performance of the mini- and the bench-scale reactor operating in upflow mode have been investigated. Reactor performance simulation was attempted by a mathematical model that takes into account axial dispersion of the liquid phase and gas–liquid mass transfer. Bench-scale reactor operation was characterized by lower mass transfer rates than the corresponding mini-scale one. Combining model predictions and mock up operation it is concluded that the stronger mass transfer resistances calculated for the bench-scale reactor are associated with poorer gas distribution through the catalyst bed. Reduction of the bed diameter results in better gas–liquid contact by forcing the gas bubbles to distribute more effectively into the liquid phase.  相似文献   

13.
Aiming to understand the effect of various parameters such as liquid velocity, surface tension, and wetting phenomena, a Volume‐of‐Fluid (VOF) model was developed to simulate the multiphase flow in high‐pressure trickle‐bed reactor (TBR). As the accuracy of the simulation is largely dependent on mesh density, different mesh sizes were compared for the hydrodynamic validation of the multiphase flow model. Several model solution parameters comprising different time steps, convergence criteria and discretization schemes were examined to establish model parametric independency results. High‐order differencing schemes were found to agree better with the experimental data from the literature given that its formulation includes inherently the minimization of artificial numerical dissipation. The optimum values for the numerical solution parameters were then used to evaluate the hydrodynamic predictions at high‐pressure demonstrating the significant influence of the gas flow rate mainly on liquid holdup rather than on two‐phase pressure drop and exhibiting hysteresis in both hydrodynamic parameters. Afterwards, the VOF model was applied to evaluate successive radial planes of liquid volume fraction at different packed bed cross‐sections. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

14.
Correlations were developed to predict frictional pressure drop for concurrent gas‐liquid upflow through packed beds covering all the three identified flow regimes, i.e. bubble flow, pulse flow and spray flow. The observation that the gas and liquid flow rates have different influences on the two‐phase pressure drop in different flow regimes, was taken into consideration in the development of these correlations. More than 600 experimental pressure drop data from the present study and literature covering a wide range in gas‐liquid systems, flow rates and column packing were used.  相似文献   

15.
Wire‐mesh sensors are increasingly used for flow imaging in packed beds. In this study, a capacitance wire‐mesh sensor is applied to measure the cross‐sectional liquid phase distribution in a rotating fixed‐bed reactor. The liquid filling level is derived as a crucial parameter defining the operational window of the reactor concept. Contrary to the standard sensor configuration, wireless data transfer and autonomous power supply is integrated. Furthermore, appropriate data processing is required to visualize the liquid flow of the three‐phase system (nitrogen, cumene and γ‐Al2O3 particles).  相似文献   

16.
Hydrodynamic data obtained from laboratory‐scale trickle‐beds often fail to accurately represent industrial‐scale systems with high packing aspect ratios and column‐to‐particle diameter ratios. In this study, pressure drop, liquid holdup, and flow regime transition were investigated in a pilot‐scale trickle‐bed column of 33 cm ID and 2.45 m bed height packed with 1.6 mm × 8.4 ± 1.4 mm cylindrical extrudates for air‐water mass superficial velocities of 0.0023 – 0.094 kg/m2s and 4.5 – 45 kg/m2s, respectively, at atmospheric pressure. Significant deviation was observed from pressure drop and liquid holdup correlations at low liquid flows rates, corresponding to gravity‐driven flow limit. Likewise, liquid saturation is overestimated by correlations at high liquid flow rates, owing to significantly reduced wall effects. Lastly, trickle‐to‐dispersed bubble flow and trickle‐to‐pulsing flow regime transitions are reported using a combination of visual observations and analysis of the magnitude of local pressure fluctuations within the column. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2560–2569, 2018  相似文献   

17.
The objective of the present work is to determine the influence of the two-phase flow direction in hydrotreating bench scale plants on the axial dispersion of the liquid phase. Residence time distribution experiments under ambient conditions in cocurrent upflow and in cocurrent downflow are carried out in a catalytic hydrotreating bench scale plant, which contains a thermowell. Particles that are representative of a commercial catalyst are used. The fluids and flow rates are chosen in order to simulate deep desulfurization conditions of a straight-run gas oil. In order to determine the axial dispersion only within the bed of particles, a radioactive tracer is used.The hydrodynamic parameters are identified using an axial dynamic piston dispersion model. The liquid axial dispersion is found to be significantly higher in the downflow mode than in the upflow mode. The values of the upflow liquid saturation are in a good agreement with the values found in the literature whereas the downflow liquid saturation is lower.Simulations with a multiphase model indicate that the difference of the axial dispersion might have a significant influence on the hydrodesulfurization performances.  相似文献   

18.
The residence time distribution in liquid phase was measured in a cocurrent upflow packed bed reactor for the system methanol-hydrogen at low Reynolds numbers and at elevated pressure. The plug flow with axial dispersion model was used to describe mixing in the system. The imperfect pulse method was used to measure the system response to a tracer pulse input. The parameters were calculated using the weighted moments method. The influence of the weighting factor was investigated. The experimental and theoretical outputs, as calculated by convolution, agreed very well. Different types of correlations were used for the Bodenstein number and liquid hold-up. From these correlations, the optimal one was selected for each parameter. A comparison was made between the ordinary moments and the weighted moments methods which led to the conclusion that the latter method is superior with respect to the accuracy of the estimated parameters and therefore strongly recommended.  相似文献   

19.
Based on a self-established cold-flow experimental device, the pressure drop in a cocurrent downflow three-phase moving bed was investigated under a wide range of gas, liquid, and solid flow rates during dynamic and steady-state operation. The results showed that for the startup of the bed, since the first bed layer packed by fall-falling of particles had lower voidage, it would take at least one bed volume time to make the voidage in the bed reach the steady-state. Under steady-state conditions, the pressure drop increased with the increase of gas and liquid mass flow rates, liquid viscosity, and decreased with the increase of solid flow rate. Furthermore, it was found that the liquid distribution became more uniform due to particle movement. The experimental data obtained in this study was used to develop a correlation to predict the pressure drop in a three-phase moving bed with an average relative error of 9.32%.  相似文献   

20.
The influences of concurrent flow of air–Newtonian and non-Newtonian liquid systems on pressure drop and on its reduction in downflow trickle bed reactor are presented in the present work. The pressure drop at different flow regimes in the trickle bed is enunciated by the dynamic interaction model based on the framework of the momentum balance. From the analysis, it is observed that the non-ideality factor of bubble flow regime is higher than that of pulse and trickle flow regimes which may influence efficiency of the reactor. The present work also concludes that the percentage of pressure reduction increases with increasing the surfactant concentration. However there is a limitation of change of concentration, above which no more reduction can be obtained. The present study may be useful for further understanding and modelling of multiphase reactor with non-Newtonian liquid, which has great industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号