首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the growing complexity of separation systems, the application of thin film composite nanofiltration (TFN) membranes in organic solvent separation faces numerous challenges. To augment its solvent stability, an in-situ constructed dopamine hydrogel doped with UiO-66@CNT was developed as an intermediate layer on a polyetherimide (PEI) ultrafiltration membrane. Subsequent interfacial polymerization on this interlayer led to the formation of a solvent-resistant nanofiltration membrane with a vast covalent bond structure, large specific surface area, and enhanced hydrophilicity. Our findings revealed that when the CNT loading in the UiO-66@CNT composite nanoparticles was 2 wt%, the TFN-U2C2 membrane exhibited a maximum pure water flux of 126.32 L/(m2·h) and a methanol flux of 45.45 L/(m2·h). The rejection rates for Congo red aqueous and methanol solutions were 96.88% and 92.14%, respectively. The membrane also demonstrated commendable anti-fouling properties. Remarkably, even after 48 h of immersion in various organic solvents, the membrane retained its morphology and separation efficiency. Compared to the TFN-U2 membrane without CNT addition, the enhancement in separation performance was considerably significant. Hence, this membrane has significant potential for application in treatment of wastewater containing organic solvents and is promising in related fields.  相似文献   

2.
Thin film composite (TFC) nanofiltration membranes with defined porous structure of the separation layer are desirable for the concentration of neutral solute and separation of salts from a mixture. Herein, we report the formation of TFC membranes composed of polyamide (PA) separation layer by the interfacial polymerization between new dextran‐butyl amine (Dex‐NH2) macromonomer and trimesoyl chloride on polysulfone support membrane. The membranes prepared with 1%–1.5% (wt/vol) of Dex‐NH2 exhibited water permeance of 110–116 L m?2 h?1 MPa?1 with 62%–71% rejection of Na2SO4 and 12%–14% rejection of MgCl2. The membranes also showed about 91% rejection of poly(ethylene glycol) of molecular weight 2000 g/mol and about 11% rejection of NaCl. A decrease in permeance and ions selectivity was observed with increasing concentration of Dex‐NH2. The dextran chains attached to the PA network restrict the diffusion of Dex‐NH2 toward the interfacial zone and thereby assist the formation of porous and thin PA layer compared to that when free amine (alkyl diamine) was used. These membranes are applicable for the separation of small molecular weight neutral solutes from mixture containing monovalent salts. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45301.  相似文献   

3.
《分离科学与技术》2012,47(13-15):1295-1305
Abstract

Experimental results are presented on membranes of novel composition which selectively permeate ammonia and carbon dioxide from mixtures containing hydrogen. The CO2-selective membrane, which consists of a thin liquid film of the salt hydrate tetramethylammonium fluoride tetrahydrate, exhibits a CO2 permeance of 4-1 × 10?5 cm3/cm2·s·cmHg with selectivity, α(CO2/H2), ranging from 360-30. The NH3-selective membrane, poly(vinylammonium thiocyanate), displays a high NH3 permeance, 5?20 × 10?5 cm3/cm2·s·cmHg, with α(NH3/N2) as high as 3600 and α(NH3/H2) as high as 6000. Such membranes, which retain H2 at pressure in the feed stream, may offer new opportunities in the design of separation processes.  相似文献   

4.
A sol–gel method was applied for the preparation of silica membranes with different average pore sizes. Ammonia (NH3) permeation/separation characteristics of the silica membranes were examined in a wide temperature range (50–400°C) by measurement of both single and binary component separation. The order of gas permeance through the silica membranes, which was independent of membrane average pore size, was as follows: He > H2 > NH3 > N2. These results suggest that, for permeation through silica membranes, the molecular size of NH3 is larger than that of H2, despite previous reports that the kinetic diameter of NH3 is smaller than that of H2. At high temperatures, there was no effect of NH3 adsorption on H2 permeation characteristics, and silica membranes were highly stable in NH3 at 400°C (i.e., gas permeance remained unchanged). On the other hand, at 50°C NH3 molecules adsorbed on the silica improved NH3‐permselectivity by blocking permeation of H2 molecules without decreasing NH3 permeance. The maximal NH3/H2 permeance ratio obtained during binary component separation was ~30 with an NH3 permeance of ~10?7 mol m?2 s?1 Pa?1 at an H2 permeation activation energy of ~6 kJ mol?1. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
In this study, a novel thin-film nanocomposite (TFN) membrane is developed consisting of a cross-linked nano-modified polyvinyl alcohol (PVA) selective layer on an organic acid-modified polyvinylidene fluoride (PVDF) membrane. The nano-modification of the PVA layer is performed via incorporating different amounts of the amine-functionalized multiwalled carbon nanotubes (MWCNTs-NH2) into the PVA matrix. The effect of citric acid on the chemical structure and morphology of the PVDF support is also investigated. The performance of the resultant membranes in the nanofiltration (NF) of MgSO4 and acid yellow-17 aqueous solutions is also studied. The results indicate that the modification of the support with 0.5 wt% of citric acid increased the water permeance from 1.59 L m−2 h−1 bar−1 (LMH/bar) for PVA/PVDF to 4.49 LMH/bar for the PVA/modified PVDF membrane. Furthermore, the optimum value of MWCNT-NH2 (0.6 wt%) increases the permeance of the resultant TFN membrane to 4.94 LMH/bar while maintaining a high rejection. Interestingly, the incorporation of MWCNT-NH2 into the PVA layer and citric acid into the PVDF solution results in a membrane with the highest permeance of 6 LMH/bar.  相似文献   

6.
A post‐polymerization method for metal–organic frameworks (MOFs) has been developed to produce super‐acidic solid nanoparticles. Thus, the NH2MIL‐53(Al) MOF was functionalized with (3‐aminopropyl)triethoxysilane (APTES) from amine groups to yield active site anchored MOF nanoparticles. Then, sulfonated polymer/MOF hybrid nanoparticles were prepared by redox polymerization of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (MOF‐g‐PAMPS), initiated onto the surfaces of aminopropyl‐functionalized NH2MIL‐53(Al) nanoparticles. The synthesis and modification of NH2MIL‐53(Al) nanoparticles were characterized by Fourier transform infrared (FTIR) spectroscopy and TGA. FTIR and TGA results indicated that APTES modifier agent and AMPS monomer were successfully grafted onto the MOF nanoparticles. The grafting efficiency of PAMPS polymer onto the MOF nanoparticles was estimated from TGA thermograms to be 33%. Also, sulfonated polymer/MOF hybrid nanoparticles showed a proton conductivity as high as 4.9 × 10?5 S cm?1. Nitrogen adsorption of modified NH2MIL‐53(Al) showed also a decrease in pore volume. The morphology and crystalline structure of MOF nanoparticles before and after the modification processes were studied by SEM and XRD, respectively. © 2015 Society of Chemical Industry  相似文献   

7.
The development of high flux and solvent‐stable thin‐film composite (TFC) organic solvent nanofiltration (OSN) membranes was reported. A novel cross‐linked polyimide substrate, consisting of a thin skin layer with minimum solvent transport resistance and a sponge‐like sublayer structure that could withstand membrane compaction under high‐pressure was first fabricated. Then the solvent flux was significantly enhanced without compromising the solute rejection by the coupling effects of (1) the addition of triethylamine/camphorsulfonic acid into the monomer solution, and (2) the combined post‐treatments of glycerol/sodium dodecyl sulphate immersion and dimethyl sulfoxide (DMSO) filtration. Finally, the long‐term stability of the TFC membrane in aprotic solvents such as DMSO was improved by post‐crosslink thermal annealing. The novel TFC OSN membrane developed was found to have superior rejection to tetracycline (MW: 444 g/mol) but was very permeable to alcohols such as methanol (5.12 lm?2h?1bar?1) and aprotic solvents such as dimethylformamide (3.92 lm?2h?1bar?1) and DMSO (3.34 lm?2h?1bar?1). © 2014 American Institute of Chemical Engineers AIChE J, 60: 3623–3633, 2014  相似文献   

8.
A comprehensive scale‐up procedure for amine‐functionalized UiO‐66 is implemented, which leads to the development of a novel flow‐through metal‐organic framework synthesis process. Products are characterized via BET modeling of N2 adsorption at 77 K and powder XRD to confirm crystal porosity and phase, respectively. Batch syntheses are conducted to examine the effects of polytetrafluoroethylene and glass vessel materials on crystal yield and quality. Intermediate samples from sealed‐vessel trials at 373, 383, and 393 K are collected and characterized, which show a high degree of product consistency. Nucleation rates are determined at the same temperatures, and the Arrhenius relationship is used to predict the activation energy of nucleation, EaNuc. A continuous‐flow reactive crystallization process is developed using a draft‐tube type reactor. As a proof of concept, the reactor is operated for three retention times. The cumulative product, material retained within the crystallizer, and intermediate samples are collected and characterized to confirm UiO‐66‐NH2 production. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1255–1262, 2013  相似文献   

9.
Organic/inorganic hybrid silica membranes were prepared from 1,1,3,3‐tetraethoxy‐1,3‐dimethyl disiloxane (TEDMDS) by the sol‐gel technique with firing at 300–550°C in N2. TEDMDS‐derived silica membranes showed high H2 permeance (0.3–1.1 × 10?6 mol m?2 s?1 Pa?1) with low H2/N2 (~10) and high H2/SF6 (~1200) perm‐selectivity, confirming successful tuning of micropore sizes larger than TEOS‐derived silica membranes. TEDMDS‐derived silica membranes prepared at 550°C in N2 increased gas permeances as well as pore sizes after air exposure at 450°C. TEDMDS had an advantage in tuning pore size by the “template” and “spacer” techniques, due to the pyrolysis of methyl groups in air and Si? O? Si bonding, respectively. For pore size evaluation of microporous membranes, normalized Knudsen‐based permeance, which was proposed based on the gas translation model and verified with permeance of zeolite membranes, reveals that pore sizes of TEDMDS membranes were successfully tuned in the range of 0.6–1.0 nm. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

10.
The sol‐gel method was applied in the fabrication of homogenous polyhedral oligomeric silsesquioxane (HOMO‐POSS)‐derived silica membranes. Single gas permeation characteristics in a temperature range of 100–500°C were examined to discuss the effect of silica precursor on amorphous silica networks. HOMO‐POSS‐derived membranes showed a CO2 permeance of 1.1 × 10?7 mol m?2 s?1 Pa?1 with a CO2/CH4 permeance ratio of 131 at 100°C, which is a superior CO2/CH4 separation performance by comparison with tetraethoxysilane (TEOS)‐derived silica membranes. Normalized Knudsen‐based permeance (NKP) was applied for quantitative evaluation of pore size. HOMO‐POSS‐derived membranes had loose amorphous silica structures compared to TEOS‐derived membranes and pore size was successfully tuned by changing the calcination temperatures. The activation energy for a HOMO‐POSS‐derived membrane fired at 550°C with a uniform pore size of ~ 0.42 nm increased linearly with the ratio of the kinetic diameter of the gas molecule to the pore diameter, λ (=dk/dp), and showed a trend similar to that of DDR‐type zeolite membranes. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1733–1743, 2012  相似文献   

11.
Gas separation by metal‐organic framework (MOF) membranes is an emerging research field. Their commercial application potential is, however, still rarely explored due in part to unsatisfied separation characteristics and difficulty in finding suitable applications. Herein, we report “sharp molecular sieving” properties of high quality isoreticular MOF‐1 (IRMOF‐1) membrane for CO2 separation from dry, CO2 enriched CO2/CH4, and CO2/N2 mixtures. The IRMOF‐1 membranes exhibit CO2/CH4 and CO2/N2 separation factors of 328 and 410 with CO2 permeance of 2.55 × 10?7 and 2.06 × 10?7 mol m?2 s?1 Pa?1 at feed pressure of 505 kPa and 298 K, respectively. High grade CO2 is efficiently produced from the industrial or lower grade CO2 feed gas by this MOF membrane separation process. The demonstrated “sharp molecular sieving” properties of the MOF membranes and their potential application in production of value‐added high purity CO2 should bring new research and development interest in this field. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3836–3841, 2016  相似文献   

12.
The sol–gel method was applied to the fabrication of amorphous silica membranes for use in hydrogen separation at high temperatures. The effects of fabrication temperature on the hydrogen permeation properties and the hydrothermal stability of amorphous silica membranes were evaluated. A thin continuous silica separation layer (thickness = <300 nm) was successfully formed on the top of a deposited colloidal silica layer in a porous glass support. After heat treatment at 800°C for an amorphous silica membrane fabricated at 550°C, however, it was quite difficult to distinguish the active separation layer from the deposited colloidal silica layer in a porous glass support, due to the adhesion of colloidal silica caused by sintering at high temperatures. The amorphous silica membranes fabricated at 700°C were relatively stable under steam atmosphere (500°C, steam = 70 kPa), and showed steady He and H2 permeance values of 4.0 × 10?7 and 1.0 × 10?7 mol·m?2·s?1·Pa?1 with H2/CH4 and H2/H2O permeance ratios of ~110 and 22, respectively. The permeance ratios of H2/H2O for membranes fired at 700°C increased drastically over the range of He/H2 permeance ratios by factors of ~3–4, and showed a value of ~30, which was higher than those fired at 500°C. Less permeation of water vapor through amorphous silica membranes fabricated at high temperatures can be ascribed to the dense amorphous silica structure caused by the condensation reaction of silanol groups.  相似文献   

13.
Inkjet printing was applied to manufacture silica‐based gas separation membranes, which were coated on a pore‐graduated alumina substrate with a mesoporous γ‐alumina interlayer. A silica sol diluted by 1‐propanol was used to print the membrane layer followed by thermal treatment in a rapid thermal processing furnace. The membrane thickness was varied between 30 and 110 nm by conducting one, two, and three coating steps. In the latter case, H2 permeance in the range of 2.0 × 10?8–3.3 × 10?8 mol/s·m2·Pa combined with H2/CO2 selectivities in the range of 15–25 were achieved, proving the concept that inorganic gas separation membranes can be successfully processed by inkjet printing.  相似文献   

14.
Catalytic decomposition of NH3 with H2‐selective microporous silica membranes for COx‐free hydrogen production was studied theoretically and experimentally. The simulation study shows that NH3 conversion, H2 yield and H2 purity increase with the Damköhler number (Da), and their improvement is affected by the effect of H2 extraction as well as NH3 and N2 permeation through the membranes. The experimental study of NH3 decomposition was carried out in a bimodal catalytic membrane reactor (BCMR), consisting of a bimodal catalytic support and a H2‐selective silica layer. Catalytic membranes showed H2 permeances of 6.2–9.8 × 10?7 mol m?2 s?1 Pa?1, with H2/NH3 and H2/N2 permeance ratios of 110–200 and 200–700, respectively, at 773 K. The effect of operating conditions on membrane reactor performance with respect to NH3 conversion, H2 yield and H2 purity was investigated, and the results were in agreement with those calculated by the proposed simulation model. © 2012 American Institute of Chemical Engineers AIChE J, 59: 168–179, 2013  相似文献   

15.
Ultrathin (down to 300 nm), high quality carbon molecular sieve (CMS) membranes were synthesized on mesoporous γ‐alumina support by pyrolysis of defect free polymer films. The effect of membrane thickness on the micropore structure and gas transport properties of CMS membranes was studied with the feed of He/N2 and C3H6/C3H8 mixtures. Gas permeance increases with constant selectivity as the membrane thickness decreases to 520 nm. The 520‐nm CMS membrane exhibits C3H6/C3H8 mixture selectivity of ~31 and C3H6 permeance of ~1.0 × 10?8 mol m?2 s?1 Pa?1. Both C3H8 permeance and He/N2 selectivity increase, but the permeance of He, N2, and C3H6 and the selectivity of C3H6/C3H8 decrease with further decrease in membrane thickness from 520 to 300 nm. These results can be explained by the thickness‐dependent chain mobility of the polymer film which yields thinner final CMS membranes with reduction in pore size and possible closure of C3H6‐accessible micropores. © 2015 American Institute of Chemical Engineers AIChE J, 62: 491–499, 2016  相似文献   

16.
《分离科学与技术》2012,47(6):849-858
Using the uniaxial compaction method, ceramic disk type microfiltration membranes were fabricated using mixtures of clays to yield membranes M1, M2, and M3. These were obtained with distinct compositions of raw materials at a sintering temperature of 900°C. Membrane characterization was conducted using thermogravimetric analysis (TGA), particle size distribution (PSD), X-ray diffraction (XRD), and scanning electron microscope analysis (SEM). Morphological characterization of these membranes includes the evaluation of average porosity, pore size, mechanical stability, chemical stability, and hydraulic permeance. With varying composition of the raw materials, it is observed that the average porosity and pore size of the membrane varied between 23–30% and 0.45 to 1.30 µm. For all membranes, the flexural strength varied within the range of 10-34 MPa. Chemical stability tests indicate that the membranes are stable in both acidic and basic media. The hydraulic permeance of M1, M2, and M3 membranes is about 3.97 × 10?6, 2.34 × 10?6, and 0.37 × 10?6 m3/m2 s kPa, respectively. Further, the performance of these membranes was studied for the microfiltration of synthetic oily wastewater emulsions. Amongst all membranes, membrane, M2 performance is satisfactory as it provides oil rejection of 96%, with high permeate flux of 0.65 × 10?4 m3/m2 s at a lower transmembrane pressure differential of 69 kPa for the oil concentration of 200 mg/L.  相似文献   

17.
BACKGROUND: Ceramic membranes have received more attention than polymeric membranes for the separation and purification of bio‐products owing to their superior chemical, mechanical and thermal properties. Commercially available ceramic membranes are too expensive. This could be overcome by fabricating membranes using low‐cost raw materials. The aim of this work is to fabricate a low‐cost γ‐Al2O3–clay composite membrane and evaluate its potential for the separation of bovine serum albumin (BSA) as a function of pH, feed concentration and applied pressure. To achieve this, the membrane support is prepared using low‐cost clay mixtures instead of very expensive alumina, zirconia and titania materials. The cost of the membrane can be further reduced by preparing a γ‐alumina surface layer on the clay support using boehmite sol synthesized from inexpensive aluminium chloride instead of expensive aluminium alkoxide using a dip‐coating technique. RESULTS: The pore size distribution of the γ‐Al2O3‐clay composite membrane varied from 5.4–13.6 nm. The membrane was prepared using stable boehmite sol of narrow particle size distribution and mean particle size 30.9 nm. Scanning electron microscopy confirmed that the surface of the γ‐Al2O3–clay composite membrane is defect‐free. The pure water permeability of the support and the composite membrane were found to be 4.838 × 10?6 and 2.357 × 10?7 m3 m?2 s?1 kPa?1, respectively. The maximum rejection of BSA protein was found to be 95%. It was observed that the separation performance of the membrane in terms of flux and rejection strongly depends on the electrostatic interaction between the protein and charged membrane. CONCLUSION: The successively prepared γ‐Al2O3‐clay composite membrane proved to possess good potential for the separation of BSA with high yield and could be employed as a low cost alternate to expensive ceramic membranes. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Silica and cobalt‐doped silica membranes that showed a high permeance of 1.8 × 10?7 mol m?2 s?1 Pa?1 and a H2/N2 permeance ratio of ~730, with excellent hydrothermal stability under steam pressure of 300 kPa, were successfully prepared. The permeation mechanism of gas molecules, focusing particularly on hydrogen and water vapor, was investigated in the 300–500°C range and is discussed based on the activation energy of permeation and the selectivity of gaseous molecules. The activation energy of H2 permeation correlated well with the permeance ratio of He/H2 for porous silica membranes prepared by sol–gel processing, chemical vapor deposition (CVD), and vitreous glasses, indicating that similar amorphous silica network structures were formed. The permeance ratios of H2/H2O were found to range from 5 to 40, that is, hydrogen (kinetic diameter: 0.289 nm) was always more permeable than water (0.265 nm). © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

19.
Crack‐free γ‐Al2O3‐coated glass‐bonded SiC membranes were successfully prepared using a simple heat‐treatment and dip‐coating process at a temperature as low as 850°C in air. The changes in the porosity, flexural strength, flux, and oil rejection rate of the membranes were investigated while changing the initial SiC particle size. Larger SiC particles led to bigger pores, resulting in higher flux in the oily water and a lower oil rejection rate. The SiC membranes with a support prepared from 10 μm SiC powder showed an exceptionally high oil rejection rate (99.9%) with a feed oil concentration of 600 mg/L at an applied pressure of 101 kPa. The typical porosity, flexural strength, steady state flux, and oil rejection rate of the alumina‐coated SiC membrane were ~45%, ~81 MPa, 1.78×10?5 mm?2s?1, and 99.9%, respectively.  相似文献   

20.
《分离科学与技术》2012,47(13):2128-2137
Silver-doped methyl-modified silica membranes (Ag/M-SiO2) have been prepared using the sol-gel method by adding AgNO3 solution to a methyl-modified silica sol. The influence of silver-doping on the physical and chemical structures, thermal stability of –CH3 groups, and gas permeation performance for the silica membranes were investigated. The metallic silver results from the reduction of AgNO3 which can be completely transformed after calcined above 200°C. The Si–CH3 vibrational bands disappear completely when the calcination temperature is increased to 600°C, which mineralized when the calcination temperature is further increased to 750°C. The doping of silver nanoparticles has nearly no influence on the chemical structure of the methyl-modified silica materials and the thermal stability of –CH3 groups, but can make the mean pore size, total pore volume, H2 permeability, and H2/CO2 selectivities of the silica membranes increase. When operated at 200°C and a pressure difference of 0.35 MPa, the H2 permeance and H2/CO2 selectivity of Ag/M-SiO2 membrane with the AgNO3/tetraethylorthosilicate molar ratio of 0.08 is 8.99 × 10?6 mol · m?2 · Pa?1 · s?1 and 10.22, respectively. After hydrothermal treatment and regeneration, the Ag/M-SiO2 membranes show a smaller change in gas permeances and H2/CO2 permselectivities than the methyl-modified silica membranes without silver-doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号