共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigation of the mechanism of low‐density particle and liquid mixing process in a stirred vessel
In order to investigate the mechanism of the low‐density solid particle and liquid mixing process, a specialised agitator structure was used. Both computational fluid dynamics simulation and experiments were carried out to study the two‐phase mixing characteristics in the stirred vessel. The mixing process was captured by snapshots. The flow field and solid phase volume fraction evolution were analysed. Experimental and numerical results agreed well with each other. Solid particles floating on the liquid surface were gradually transported to the bottom through the centre of the vessel and the mixing time was predicted and tested. Results indicate that the agitator structure used in this study is able to form an obvious axial circulation in the vessel and then achieve a good performance in low‐density solid and liquid mixing operations. The study provides a valuable reference for the design and optimisation of solid–liquid mixing equipment. © 2011 Canadian Society for Chemical Engineering 相似文献
2.
Gas holdup has been measured in an 83‐mm diameter, 2.2‐m high column at high gas superficial velocities — 0.22 to 2.7 m/s — and at liquid (water) superficial velocities of 0 to 0.47 m/s, by means of a differential pressure transducer. The equation of Hills (1976) based on the slip velocity gives good predictions of the gas holdup for 0.1 ≤ Eg ≤ 0.4. However, the holdups predicted by this approach are considerably higher than the experimental values at gas velocities high enough that Eg > 0.4. Other equations from the literature are also shown to be inadequate. The new data and earlier data at high gas velocities are therefore correlated with a new dimensional equation for Ul ≤ 0.23 m/s. 相似文献
3.
4.
Tanumoy Mukherjee Gargi Das Subhabrata Ray 《American Institute of Chemical Engineers》2014,60(9):3362-3375
Flow distribution during gas–liquid–liquid upflow through a vertical pipe is investigated. The optical probe technique has been adopted for an objective identification of flow patterns. The probability density function (PDF) analysis of the probe signals has been used to identify the range of existence of the different patterns. Dispersed and slug flow have been identified from the nature of the PDF, which is bimodal for slug flow and unimodal for dispersed flow. The water continuous, oil continuous, and emulsion type flow distributions are distinguished on the basis of the PDF moments. The method is particularly useful at high flow rates where visualization techniques fail. Based on this, a flow pattern detection algorithm has been presented. Two different representations of flow pattern maps have been suggested for gas–liquid–liquid three phase flow. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3362–3375, 2014 相似文献
5.
Properties of gas—liquid dispersion and mixing of seven types of impellers were studied and compared in a stirred vessel with aeration. New correlations for the properties including critical dispersion impeller speed, dispersion regime, power consumption, gas hold-up, discharge flow number and discharge efficiency have been developed. The fluid/wall heat transfer was also studied with several types of dual impeller combinations. There is a critical impeller speed which determines how aeration changes the heat transfer coefficient. Operating conditions influence heat transfer interactively by three factors, which can be expressed by proper dimensionless variables. 相似文献
6.
Investigating the liquid film characteristics of gas–liquid swirling flow using ultrasound doppler velocimetry 下载免费PDF全文
Fachun Liang Zhaojun Fang Jing Chen Shitao Sun 《American Institute of Chemical Engineers》2017,63(6):2348-2357
A novel gas–liquid two‐phase flow metering method was proposed. A spiral vane mounted in the inner pipe was used to transform inlet flow patterns into gas–liquid swirling annular flow. The thickness and velocity profile of liquid film were measured by ultrasound Doppler velocimetry. The liquid flow rates were obtained by integrating of velocity profile during the liquid film zone. Experiments were carried out in an air–water two‐phase flow loop and an ultrasonic transducer was installed under the bottom of the test section with the Doppler angle of 70°. The flow patterns included stratified wavy, annular, and slug flows. Compared with non‐swirling flow, the liquid film thickness at the bottom reduces greatly. The measurement accuracy of liquid flow rate was independent of inlet flow patterns, gas and liquid velocities. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2348–2357, 2017 相似文献
7.
Thanapalan Murugesan 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1998,72(3):221-226
In the present study, in mechanically agitated gas–liquid contactors (MAC), a generalized correlation for the direct estimation of dispersed gas phase hold-up is proposed. This present proposed new correlation in terms of fundamental operating variables, involving gas velocity, impeller speed in terms of Froude number, vessel geometry and the physical properties, is more accurate than those previously reported and also simpler to use. © 1998 SCI 相似文献
8.
Haocui Zhang Guangwen Chen Jun Yue Quan Yuan 《American Institute of Chemical Engineers》2009,55(5):1110-1120
In this article, flow pattern of liquid film and flooding phenomena of a falling film microreactor (FFMR) were investigated using high‐speed CCD camera. Three flow regimes were identified as “corner rivulet flow,” “falling film flow with dry patches,” and “complete falling film flow” when liquid flow rate increased gradually. Besides liquid film flow in microchannels, a flooding presented as the flow of liquid along the side wall of gas chamber in FFMR was found at high liquid flow rate. Moreover, the flooding could be initiated at lower flow rate with the reduction of the depth of the gas chamber. CO2 absorption was then investigated under the complete falling flow regime in FFMR, where the effects of liquid viscosity and surface tension on mass transfer were demonstrated. The experimental results indicate that kL is in the range of 5.83 to 13.4 × 10?5 m s?1 and an empirical correlation was proposed to predict kL in FFMR. © 2009 American Institute of Chemical Engineers AIChE J, 2009 相似文献
9.
10.
Time-averaged pressure drops have been measured in a 15 cm internal diameter reciprocating plate column, using the water/air system under conditions of cocurrent, countercurrent and single phase (water) flow. The reciprocation frequency was varied from 1 to 4 Hz, while the stroke (peak to trough amplitude) was set at 2.54 cm. Two types of perforated plate were used, having perforation diameters 14.3 and 6.35 mm. Under single phase flow conditions, the pressure drops were in agreement with an earlier model due to Noh and Baird (1984). Under cocurrent conditions the gas flow had the effect of increasing the pressure drop, particularly at low reciprocation rates; this was interpreted in terms of enhanced circulation velocities in the liquid phase. In countercurrent flow the pressure drop was also affected by bubbles clustering at the plates. 相似文献
11.
Liquid‐bridge flow in the channel of helical string and its application to gas–liquid contacting process 下载免费PDF全文
Haifeng Cong Zhenyu Zhao Xingang Li Hong Li Xin Gao 《American Institute of Chemical Engineers》2018,64(9):3360-3368
To solve the problems of the traditional packings, such as high pressure drop, mal‐distribution and short liquid residence time, a helical flow structured packings was proposed. Two different flow patterns, liquid‐bridge flow and liquid‐drop flow were identified when the width of the channel of the helical string was adjusted. Moreover, the characteristics of the helical liquid‐bridge flow including maximum liquid loading, mean thickness of liquid film, mean residence time and effective specific surface area, were examined. And the separation efficiency was studied by the lab‐scale distillation column. In comparison, the effective specific surface area of the helical flow type packings is almost as large as the traditional B1‐350Y structured packings, but with thinner liquid film, longer liquid residence time and finally higher separation efficiency. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3360–3368, 2018 相似文献
12.
Thanapalan Murugesan G. S. Venkat Rathnam S. Panduranga Rao P. Gangadhar Rao 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1995,63(3):290-294
In the present study of gas–liquid contactors, mean residence/contact time was calculated from knowledge of superficial velocity and the gas phase hold-up, for various gas rates and impeller geometry and speeds, and compared with values obtained from RTD measurements. A new correlation, involving Flow Number, Froude Number, system geometry and the physical properties, is proposed. This uses the authors data and those available in literature. 相似文献
13.
Zhiqian Jia 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2013,88(3):340-345
Gas–liquid reactions are crucially important in chemical synthesis and industries. In recent years, membrane gas–liquid reactors have attracted great attentions due to their high selectivity, productivity and efficiency, and easy process control and scale‐up. Membrane gas–liquid reactors can be divided into three categories: dispersive membrane reactor, non‐dispersive membrane reactor and pore flowthrough reactor. The progress in membrane gas–liquid reactors, including features, applications, advantages and limits, is briefly reviewed. © 2012 Society of Chemical Industry 相似文献
14.
Jian‐Feng Chen Gui‐Zi Chen Jie‐Xin Wang Lei Shao Peng‐Fei Li 《American Institute of Chemical Engineers》2011,57(1):239-249
High‐throughput microporous tube‐in‐tube microchannel reactor (MTMCR) was first designed and developed as a novel gas–liquid contactor. Experimentally measured kLα in MTMCR is at least one or two orders of magnitude higher than those in the conventional gas–liquid contactors. A high throughput of 500 L/h for gas and 43.31 L/h for liquid is over 60 times higher than that of T‐type microchannel. An increase of the gas or liquid flow rate, as well as a reduction of the micropore size and annular channel width of MTMCR, could greatly intensify the gas–liquid mass transfer. The interfacial area, α, in MTMCR was measured to be as high as 2.2 × 105 m2/m3, which is much higher than those of microchannels (3400–9000 m2/m3) and traditional contactors (50–2050 m2/m3). The artificial neural network model was proposed for predicting α, revealing only an average absolute relative error of <5%. © 2010 American Institute of Chemical Engineers AIChE J, 2011 相似文献
15.
Mélanie Jimenez Nicolas Dietrich Arnaud Cockx and Gilles Hébrard 《American Institute of Chemical Engineers》2013,59(1):325-333
A new method for determining the molecular diffusivity of oxygen in liquids is described. The technique was applied through a flat air–liquid interface in a Hele‐Shaw cell (5 × 5 × 0.2 cm3) and was based on planar laser‐induced fluorescence (PLIF) with inhibition. A ruthenium complex (C72H48N8O6Ru) was used as the fluorescent dye sensitive to oxygen. A mathematical analysis was developed to determine the molecular diffusivity of oxygen simply by localizing the gas diffusion front. The specificity of this mathematical analysis is that it does not require the properties of the fluids (such as the saturation concentration) to be considered, which is especially relevant for complex media that are sometimes difficult to characterize properly. This technique was applied to three different fluids (viscosities ranging from 1 to 2.4 mPa·s) corresponding to binary diffusion coefficients ranging from 9.5 × 10?10 to 2 × 10?9 m2/s. Experimental data were found with an uncertainty of about 5% and were in good agreement with the literature. Particle image velocimetry and numerical simulations were also carried out to determine the optimal gas flow rate (0.01 L/s) to reach purely diffusive transfer, and the corresponding hydrodynamic profiles of the two phases. © 2012 American Institute of Chemical Engineers AIChE J, 59: 325–333, 2013 相似文献
16.
Three‐dimensional high‐resolution numerical simulations of a gas–solid jet in a high‐density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL. Published 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
17.
Masanori Yoshida Masashi Watanabe Kazuaki Yamagiwa Akira Ohkawa Masahiko Abe Shuichi Tezura Masuo Shimazaki 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2002,77(6):678-684
The behaviour of gas–liquid mixtures in the vicinity of the blades of an unsteadily rotating impeller in an unbaffled agitated vessel was studied by observations made with a rotating camera. The impellers used were a disk turbine impeller with six flat blades (DT) and a novel cross‐type impeller with four delta blades (CD). The behaviour of gas–liquid mixtures near the blades of the forward–reverse rotating impeller was unsteady in terms of the formation of cavities behind the blades and their dispersion into gas bubbles, and differed from that near the blades of a unidirectionally, steadily rotating impeller. The differences in relative power consumption between the forward–reverse rotating impellers in the unbaffled vessel and the steadily rotating impellers in the baffled vessel are discussed in relation to the differences in the behaviour of gas–liquid mixtures near the blades of each rotating impeller. © 2002 Society of Chemical Industry 相似文献
18.
19.
Trajectory modeling of gas–liquid flow in microchannels with stochastic differential equation and optical measurement 下载免费PDF全文
Lexiang Zhang Feng Xin Dongyue Peng Weihua Zhang Yuexing Wang Xiaodong Chen Yi Wang 《American Institute of Chemical Engineers》2015,61(11):4028-4034
The numbering‐up of microchannel reactors definitely faces great challenge in uniformly distributing fluid flow in every channel, especially for multiphase systems. A model of stochastic differential equations (SDEs) is proposed based on the experimental data recorded by a long‐term optical measurement to well quantify the stochastic trajectories of gas bubbles and liquid slugs in parallel microchannels interconnected with two dichotomic distributors. The expectation and variance of each subflow rate are derived explicitly from the SDEs associated with the Fokker–Planck equation and solved numerically. A bifurcation in the trajectory is found using the original model, then a modification on interactions of feedback and crosstalk is introduced, the evolutions of subflow rates calculated by the modified model match well with experimental results. The established methodology is helpful for characterizing the flow uniformity and numbering‐up the microchannel reactors of multiphase system. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4028–4034, 2015 相似文献
20.
Zahra Amiri Salman Movahedirad Mansour Shirvani 《American Institute of Chemical Engineers》2016,62(5):1430-1438
The effect of bubble injection characteristics on the mixing behavior of a gas‐solid fluidized bed is investigated using a discrete particle model. The effect of different parameters including gas injection time, velocity, and mode are studied. Simulation results show that injecting gas at a constant gas flow rate in the form of small bubbles results in a better overall particle mixing. It was also found that the injection velocities have limited effect on particle mixing behavior for the same total gas volume injected into the bed. Moreover, the mixing index (MI) of continuous gas jet bubbling regime is compared with the MI obtained in uniform gas injection regime and the results revealed that the MI of continuous jet bubbling regime has a larger value than that of uniform gas injection regime at the fixed total gas flow rate. In both regimes, z‐direction MI is larger than x‐direction index. The differences between two direction indices are more noticeable in continuous jet bubbling in comparison with the uniform gas injection regime. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1430–1438, 2016 相似文献