首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-frequency and DC performances of single-heterojunction Al 0.25Ga0.75As/GaAs heterojunction bipolar transistors (HBTs) have been measured at temperatures between 300 and 110 K. It is found that the maximum unity-current-gain cutoff frequency increases from 26 GHz at 300 K to 34 GHz at 110 K. It is shown that electron diffusion as determined from the majority-carrier mobility does not accurately estimate the base transit time, at least until corrections for degeneracy and minority-carrier mobility enhancement are included. Reasonable agreement is obtained assuming that base transport is limited by the thermal velocity of electrons at reduced temperatures  相似文献   

2.
Low-temperature microwave measurements of both lattice-matched and pseudomorphic InxGa1-xAs/In0.48As (x=0.53, 0.60, and 0.70) channel MODFETs on InP substrates were carried out in a cryogenic measurement system. The measurements were done in the temperature range of 77 to 300 K and in the frequency range of 0.5 to 11.0 GHz at different bias conditions. The cutoff frequency ( fT) for the InxGa1-xAs/In0.52Al0.48As MODFETs improved from 22 to 29 GHz, 29 to 38 GHz, and 39 to 51 GHz, for x=0.53, 0.60, and 0.70, respectively, as the temperature was lowered from 300 to 77 K, which is approximately a 31% increase at each composition. No degradations were observed in device performance. These results indicate an excellent potential of the pseudomorphic devices at low temperatures  相似文献   

3.
The authors report the DC and RF performance of nominally 0.2-μm-gate length atomic-planar doped pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As modulation-doped field-effect transistors (MODFETs) with fT over 120 GHz. The devices exhibit a maximum two-dimensional electron gas (2 DEG) sheet density of 2.4×1012 cm-2, peak transconductance g m of 530-570 mS/mm. maximum current density of 500-550 mA/mm, and peak current-gain cutoff frequency fT of 110-122 GHz. These results are claimed to be among the best ever reported for pseudomorphic AlGaAs/InGaAs MODFETs and are attributed to the high 2 DEG sheet density, rather than an enhanced saturation velocity, in the In0.25Ga0.75As channel  相似文献   

4.
The fabrication and characterization of a double pulse-doped (DPD) GaAs MESFET grown by organometallic vapor phase epitaxy (OMVPE) are reported. The electron mobility of a DPD structure with a carrier concentration of 3×1018/cm3 was 2000 cm2/V-s, which is about 20% higher than that of a pulse-doped (PD) structure. Implementing the DPD structure instead of the conventional PD structure as a GaAs MESFET channel, the drain breakdown voltage, current gain cutoff frequency, and maximum stable gain (MSG) increase. The maximum transconductance of 265 mS/mm at a drain current density of 600 mA/mm, a current gain cutoff frequency of 40 GHz, and an MSG of 11 dB at 18 GHz were obtained for a 0.3 μm n+ self-aligned DPD GaAs MESFET  相似文献   

5.
Encapsulated rapid thermal annealing (RTA) has been used in the fabrication of indium phosphide (InP) power metal-insulator-semiconductor field-effect transistors (MISFETs) with ion-implanted source, drain, and active channel regions. The MISFETs had a gate length of 1.4 μm. Six to ten gate fingers per device, with individual gate finger widths of 100 or 125 μm, were used to make MISFETs with total gate widths of 0.75, 0.8, or 1 mm. The source and drain contact regions and the channel region of the MISFETs were fabricated using silicon implants in semi-insulating InP at energies from 60 to 360 keV with doses from 1×1012 to 5.6×1014 cm-2. The implants were activated using RTA at 700°C for 30 s in N2 or H2 ambients using a silicon nitride encapsulant. The high-power, high-efficiency MISFETs were characterized at 9.7 GHz, and the output microwave power density for the RTA conditions used was as high as 2.4 W/mm. For a 1-W input at 9.7 GHz gains up to 3.7 dB were observed, with an associated power-added efficiency of 29%. The output power density was 70% greater than that reported for GaAs MESFETs  相似文献   

6.
An extensive study of epitaxial lift-off (ELO) Al0.3Ga 0.7As/GaAs modulation doped heterostructure high electron mobility field-effect transistors (HEMT's) is presented. Effects of ELO on electron transport properties of two-dimensional electron gas at AlGaAs/GaAs interface are investigated. An ELO HEMT with 1.5 μm gate length had a maximum extrinsic transconductance gm-max=125 mS/mm, a unity current gain cut-off frequency ft=10.5 GHz, and a maximum frequency of oscillation fmax=12 GHz. Statistical distributions of maximum intrinsic transconductance of ELO HEMT's are presented and compared with their on-wafer counterparts. Stability of the ELO HEMT's has also been evaluated by continuous operation at room temperature under dc bias  相似文献   

7.
We fabricated 30-nm gate pseudomorphic channel In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As high electron mobility transistors (HEMTs) with reduced source and drain parasitic resistances. A multilayer cap structure consisting of Si highly doped n/sup +/-InGaAs and n/sup +/-InP layers was used to reduce these resistances while enabling reproducible 30-nm gate process. The HEMTs also had a laterally scaled gate-recess that effectively enhanced electron velocity, and an adequately long gate-channel distance of 12nm to suppress gate leakage current. The transconductance (g/sub m/) reached 1.5 S/mm, and the off-state breakdown voltage (BV/sub gd/) defined at a gate current of -1 mA/mm was -3.0 V. An extremely high current gain cutoff frequency (f/sub t/) of 547 GHz and a simultaneous maximum oscillation frequency (f/sub max/) of 400 GHz were achieved: the best performance yet reported for any transistor.  相似文献   

8.
Ga0.51In0.49P/In0.15Ga0.85 As/GaAs pseudomorphic doped-channel FETs exhibiting excellent DC and microwave characteristics were successfully fabricated. A high peak transconductance of 350 mS/mm, a high gate-drain breakdown voltage of 31 V and a high maximum current density (575 mA/mm) were achieved. These results demonstrate that high transconductance and high breakdown voltage could be attained by using In0.15Ga0.85As and Ga0.51In0.49P as the channel and insulator materials, respectively. We also measured a high-current gain cut-off frequency ft of 23.3 GHz and a high maximum oscillation frequency fmax of 50.8 GHz for a 1-μm gate length device at 300 K. RF values where higher than those of other works of InGaAs channel pseudomorphic doped-channel FETs (DCFETs), high electron mobility transistors (HEMTs), and heterostructure FETs (HFETs) with the same gate length and were mainly attributed to higher transconductance due to higher mobility, while the DC values were comparable with the other works. The above results suggested that Ga0.51In0.49P/In0.15Ga0.85 As/GaAs doped channel FET's were were very suitable for microwave high power device application  相似文献   

9.
A hot-electron InGaAs/InP heterostructure bipolar transistor (HBT) is discussed. A unity-current-gain cutoff frequency of 110 GHz and a maximum frequency of oscillation of 58 GHz are realized in transistors with 3.2×3.2-μm2 emitter size. Nonequilibrium electron transport, with an average electron velocity approaching 4×107 cm/s through the thin (650 Å) heavily doped (p=5×1019 cm-3) InGaAs base and 3000-Å-wide collector space-charge region, results in a transit delay of 0.5 ps corresponding to an intrinsic cutoff frequency of 318 GHz  相似文献   

10.
A novel metal-SiO2-InP MISFET (metal-insulator-semiconductor field effect transistor) structure is proposed. This device incorporates a modulation doped channel and the self-aligned gate feature of Si MOSFETs. The modulation doping provides very high electron mobility and the self-alignment of gate, source and drain provides high packing density. Analytical results on current-voltage and transconductance characteristics are presented. Significant enhancement in high frequency performance over conventional MISFETs, employing SiO2 as an insulator, is reported.  相似文献   

11.
Hot electron noise measurements are performed in Si doped Alx Ga1-xAs n+nn+ devices, for three different Al concentrations: x=0.15, 0.2, 0.25. Noise temperatures are obtained using a pulsed measurement technique as functions of electric field and frequency. Longitudinal diffusion coefficients D(E) are deduced at 4 GHz. Results are analyzed through the scattering mechanisms which greatly affect the electron velocity properties of AlxGa1-xAs materials. Comparisons with n+ nn+ GaAs devices are made  相似文献   

12.
The authors have developed state-of-the-art millimeter-wave power transistors using quantum-well MISFETs. MISFETs with both undoped InGaAs wells and doped InGaAs wells have been built. The ft of the MISFETs with doped well was higher than that of MISFETs with undoped wells, indicating that the device speed does not degrade when the charge transport layer is doped. The power performance of the MISFETs with doped wells was far superior. The best device delivered a power density of 1.0 W/mm with 3.2-dB gain and 27% power-added efficiency at 60 GHz  相似文献   

13.
Al0.3Ga0.7N/GaN high electron mobility transistor (HEMT) structures have been grown on resistive Si(111) substrate by molecular beam epitaxy (MBE) using ammonia (NH3). The use of an AlN/GaN intermediate layer allows a resistive buffer layer to be obtained. High sheet carrier density and high electron mobility arc obtained in the channel. A device with 0.5 μm gate length has been realised exhibiting a maximum extrinsic transconductance of 160 mS/mm and drain-source current exceeding 600 mA/mm. Small-signal measurements show ft of 17 GHz and fmax of 40 GHz  相似文献   

14.
The DC and RF performance of a 0.25 μm gate-length p-type SiGe modulation-doped field-effect transistor (MODFET) is reported. The hole channel consists of compressively strained Si0.3Ge0.7 layer grown on a relaxed Si0.7Ge0.3 buffer on a Si substrate. The combination of high-hole mobility, low-gate leakage current, and improved ohmic contact metallization results in an enhancement of the DC and RF performance. A maximum extrinsic transconductance (g(mext)) of 230 mS/mm was measured. A unity current gain cut-off frequency (fT) of 24 GHz and a maximum frequency of oscillation (fmax) of 37 GHz were obtained for these devices  相似文献   

15.
A heterostructure metal-insulator-semiconductor field-effect transistor (MISFET) with a modulation-doped channel is proposed. In this device, a very thin undoped subchannel is located between the undoped wide-bandgap insulator and a thin heavily doped channel. In the depletion mode of operation, electron transport takes place along the heavily doped channel. When the device enters the accumulation mode of operation, electrons pile up against the heterointerface in the high-mobility undoped subchannel. This results in markedly improved transport characteristics at the onset of accumulation. The concept is demonstrated in the In0.52Al0.48As/In0.53 Ga0.47As system on InP. A 1.5-μm-gate-length MISFET shows a unity current-gain cutoff frequency of 37 GHz  相似文献   

16.
The authors have fabricated the first gate-self-aligned germanium MISFETs and have obtained record transconductance for germanium FETs. The devices fabricated are p-channel, inversion-mode germanium MISFETs. A germanium-oxynitride gate dielectric is used and aluminum gates, serve as the mask for self-aligned source and drain implants. A maximum room-temperature transconductance of 104 mS/mm was measured for a 0.6-μm gate length. A hole inversion channel mobility of 640 cm2 /V-s was calculated using transconductance and capacitance data from long-channel devices. This large hole channel mobility suggests that germanium may be an attractive candidate for CMOS technology  相似文献   

17.
Cryogenic low-noise two-stage amplifiers were developed for frequency bands of 3.4-4.6 GHz, 4-8 GHz, and 8-9 GHz using commercial GaAs high electron mobility transistor. The performances are in very good agreement with simulations, and at a cryogenic temperature of 12 K, input noise temperatures get as low as 0.6 K/GHz (2.8 K for the 3.4-4.6 GHz LNA and 5 K for the 4-8 GHz and 8-9 GHz LNAs). Gain ranges from 25 to 28 dB. Ultralow noise temperature, low-power consumption, high reliability, and reproducibility make these devices adequate for series production and receiver arrays in, e.g., telescopes.  相似文献   

18.
T-shaped 0.15-μm WSix gate HEMTs have been fabricated on AlGaAs/InGaAs MBE wafers. Their S-parameters, output noise spectral density Pno, and noise temperatures T e at cryogenic temperatures, were measured. The current gain cutoff frequency fT increases from 61 GHz at 295 K to 87 GHz at 90 K. Pno and Te measurements indicate that the hot-electron effect is noticeable at low temperatures at high drain current. At 30 GHz, the noise temperature is 19±3 K with an associated gain of 10.4 dB at the physical temperature of 20 K. The results demonstrate the great potential of AlGaAs/InGaAs HEMTs for low-temperature applications  相似文献   

19.
An In0.3Al0.7As/In0.3Ga0.7 As metamorphic power high electron mobility transistor (HEMT) grown on GaAs has been developed. This structure with 30% indium content presents several advantages over P-HEMT on GaAs and LM-HEMT on InP. A 0.15-μm gate length device with a single δ doping exhibits a state-of-the-art current gain cut-off frequency Ft value of 125 GHz at Vds=1.5 V, an extrinsic transconductance of 650 mS/mm and a current density of 750 mA/mm associated to a high breakdown voltage of -13 V, power measurements performed at 60 GHz demonstrate a maximum output power of 240 mW/mm with 6.4-dB power gain and a power added efficiency (PAE) of 25%. These are the first power results ever reported for any metamorphic HEMT  相似文献   

20.
In0.5(Al0.3Ga0.7)0.5 P/In0.2Ga0.8As single- and double-heterojunction pseudomorphic high electron mobility transistors (SH-PHEMTs and DH-PHEMTs) on GaAs grown by gas-source molecular beam epitaxy (GSMBE) were demonstrated for the first time. SH-PHEMTs with a 1-μm gate-length showed a peak extrinsic transconductance gm of 293 mS/mm and a full channel current density Imax of 350 mA/mm. The corresponding values of gm and Imax were 320 mS/mm and 550 mA/mm, respectively, for the DH-PHEMTs. A short-circuit current gain (H21) cutoff frequency fT of 21 GHz and a maximum oscillation frequency fmax of 64 GHz were obtained from a 1 μm DH device. The improved device performance is attributed to the large ΔEc provided by the In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As heterojunctions. These results demonstrated that In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As PHEMT's are promising candidates for microwave power applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号