首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dense boron samples with a glassy structure have been prepared for the first time by high-pressure sintering of amorphous boron powder at temperatures from 750 to 1100 K. Analysis of the mechanical properties of boron samples sintered at pressures from 2 to 8 GPa and different temperatures indicates that sintering proceeds most effectively near 750 K. Purification of amorphous boron in water is shown to be effective in removing products of boron oxidation in air.  相似文献   

3.
Effects of post-hot isostatic pressing (post-HIP) on the elastic properties, strength and fracture toughness of different commercial alumina-based ceramics was investigated. The materials were presintered ceramics with alumina contents of 94, 97 and 99%. HIP was performed using a Mo or graphite furnace in a wide temperature range to establish regimes which allowed attainment of the best combination of mechanical properties, e.g. ultimate bending strength, Weibull's modulus, fracture toughness and modulus of elasticity. The results are discussed in relation to microstructure development.  相似文献   

4.
Dense metal-ceramic composites based on boron carbide were fabricated using boron carbide and Fe powders as starting materials. The addition of 3.5–5.5 vol% of Fe leads to enhanced sintering due to the formation of a liquid phase at high temperature. Preforms, with about 20 vol% porosity were obtained by sintering at 2,050 °C even from an initial boron carbide powder with very low sinterability. Successful infiltration of the preforms was carried out under vacuum (10−4 torr) at 1,480 °C. The infiltrated composite consists of four phases: B12(C, Si, B)3, SiC, FeSi2 and residual Si. The decrease of residual Si is due to formation of the FeSi2 phase and leads to improved mechanical properties of the composites. The hardness value, the Young modulus and the bending strength of the composites fabricated form a powder mixture containing 3.5 vol% Fe are 2,400 HV, 410 GPa and 390 MPa, while these values for the composites prepared form iron free B4C powder are 1,900 HV, 320 GPa and 300 MPa, respectively. The specific density of the composite was about 2.75 g/cm3. The experimental results regarding the sintering behavior and chemical interaction between B4C and Fe are well accounted for by a thermodynamic analysis of the Fe–B–C system.
N. FrageEmail:
  相似文献   

5.
Polycrystalline hydroxyapatite (HAP) ceramics were densified by hot pressing. The effects of thermal treatments and of a sintering additive (Na3PO4) on the microstructure, flexural strength and fracture toughness were investigated. Hot pressing without additive resulted in dense HAP having a small average grain size (below 0.5 m). Spontaneous microcracking of the material was also noted. This originated from the thermal expansion anisotropy of HAP crystals. The presence of the sintering aid promotes grain growth. Dense materials exhibited mechanical properties depending on the microstructure. The highest values obtained were 137 MPa and 1.2 MPa % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaci% GGTbaaleqaaaaa!36FA!\[\sqrt \operatorname{m} \] for the flexural strength and fracture toughness, respectively. A decrease of both strength and toughness was observed with increasing average grain size. This behaviour is attributed to the weakening of the grain boundaries by either the development of initial microcracking or the Na3PO4 addition. It is concluded that hot pressing is very useful to elaborate dense HAP having good mechanical characteristics.  相似文献   

6.
The joining of hot-pressed silicon nitride ceramics, containing Al2O3 and Y2O3 as sintering aids, has been carried out in a nitrogen atmosphere. Uniaxial pressure was applied at high temperature during the joining process. Polyethylene was used as a joining agent. Joining strength was measured by four-point bending tests. The effects of joining conditions such as temperature (from 1400 to 1600°C), joining pressure (from 0.1 to 40 MPa), holding time (from 0.5 to 8 h) and surface roughness (R max) of the joining couple (about 0.12, 0.22 and 1.2m) on the joining strength were examined. The joining strength was increased with increases in joining temperature, joining pressure and holding time. Larger surface roughness caused lower joining strength. The higher joining strength was attributed to a larger true contact area. The area was increased through plastic deformation of the joined couple at elevated temperatures. The highest joining strength attained was 567 MPa at room temperature, which was about half the value of the average flexural strength of the original body. The high temperature strength measured at 1200° C did not differ very much from the room-temperature value.  相似文献   

7.
The tensile mechanical properties of as-cast ingot metal (IM), spray-formed (SF), and as-hot-rolled (HR) ultra-high carbon steels (UHCS) containing silicon were investigated in this paper. The relationship between microstructure and tensile properties was described for these steels. The carbide networks, the pearlitic interlamellar spacing, the size of carbide particles, and the volume ratio between lamellar and spheroidized structure are all microstructure factors influencing the tensile properties in UHCS.  相似文献   

8.
《Advanced Powder Technology》2021,32(10):3610-3623
Achieving the near-net shaping of brittle and difficult-to-machine materials is still challenging. Thus, we explore a method to prepare Ti-22Al-25Nb alloy by solid-powder hot isostatic pressing (HIP) diffusion bonding. The grain size, microstructure, interface features and mechanical properties of the fabricated alloy were systematically investigated. The results show that the solid-powder interface realizes a complete metallurgical bonding, and the grain size, composition and microstructure in transition zone is formed on the side of preform through recrystallization. There is a huge difference for the grain size between the powder forming zone and the preforming zone. As a result, the fabricated sample for solid-powder transition zone exhibits an excellent mechanical properties, with a tensile strength of 940 MPa, elongation of 2.9% and torsional strength of 815 MPa, respectively. In response to the torsional force, the crack starts from the preforming zone, and the crack deflection and branching occurs in the transition zone, thereby preventing the crack from propagating to the powder forming zone. The torsional strength of the solid powder HIP diffusion bonding zone is basically the same as that of the preformed zone. This study proposes a new solution for fabricating brittle and difficult-to-process materials and is of great significance in the development of the overall near-net shaping technology for complex components of such material.  相似文献   

9.
The mechanical properties and corrosion behavior of as-cast, as-annealed and hot-rolled nickelaluminum bronze(NAB) alloy(Cu-9 Al-10 Ni-4 Fe-1.2 Mn, all in wt.%) in 3.5 wt.% Na Cl solution were investigated. The results show that annealing introduces a large number of k phases to precipitate in the k phase. However, after further hot rolling, the original continuous k phases are spheroidized and dispersed, increasing the strength, hardness, and elongation of the alloy. In addition to the enhanced mechanical properties, the corrosion resistance of the NAB samples is also improved significantly by hot rolling, as revealed by the mass loss measurements, electrochemical impedance spectroscopy(EIS), and cross-sectional corrosion morphology. Selective phase corrosion occurs by the preferential corrosion of the k phase, which acts as an anode to the k phases, and the uncorroded k phases are retained in the corrosion product film. The interfaces between the k phases and the surrounding corrosion products become discontinuous caused by the spheroidization of k phases, reducing the corrosion of the substrate by the corrosive medium via the channels. As a result, the corrosion rate and the maximum local corrosion depth of the hot-rolled NAB sample are greatly reduced.  相似文献   

10.
采用机械合金化-热压烧结法,制备TiC-CoCrFeNi复合材料,研究球磨时间对材料微观组织及力学性能的影响。结果表明:Co,Cr,Fe和Ni粉体在球磨10h后形成fcc结构的单相固溶体。经1200℃/1h热压烧结后,烧结体中生成TiC和Cr7C3结构的碳化物,并弥散分布于CoCrFeNi固溶体中。球磨时间显著改变了烧结体中碳化物的数量和尺寸,进而影响材料的力学性能。在球磨10h时,烧结体中纳米级TiC相急剧增多,此时复合材料的硬度(671HV)和屈服强度(1440MPa)达到最大值。  相似文献   

11.
《Optical Materials》2014,36(12):2405-2410
The Nd:YAG transparent ceramics were fabricated by vacuum sintering. The Nd:YAG samples were annealed at 1450 °C for 20 h in air and followed by hot isostatic pressing (HIP) at 1700 °C for 2 h in 200 MPa Ar and then re-annealed at 1250–1450 °C for 10 h in air. The experimental results showed that the optical properties of Nd:YAG samples varied markedly with different post treatments. After air annealing at 1450 °C for 20 h and HIP at 1700 °C for 2 h under 200 MPa of Ar and then air re-annealing at 1250 °C for 10 h, the transmittances of the samples increased from 51.2% to 77.2% (at 400 nm) and 78.4% to 83.6% (at 1064 nm), respectively. The annealing and HIP are effective post treatments to reduce oxygen vacancies and intergranular pores respectively in Nd:YAG transparent ceramics.  相似文献   

12.
为解决高碳Fe-20Mn-3Cu-1.3C TWIP钢凝固组织中易形成显微疏松、损害合金的力学性能的问题,研究了在相同热轧温度下,改变轧制变形总量对合金微孔缺陷的消除及拉伸力学性能的影响.研究表明:通过热轧变形可以有效地减少Fe-20Mn-3Cu-1.3C TWIP钢的微孔缺陷,提高组织致密度;随着热轧变形量的增加,合金的综合力学性能显著提高,当热轧变形量达到91%时,该合金中的微孔面密度由固溶态的1.67%降低至0.71%,抗拉强度达到1223.7 MPa,延伸率达到86.8%,强塑积高达106217.2 MPa.%,比未热轧变形处理提高了78.3%,显示出优异的综合力学性能,表明消除微孔缺陷是充分发挥其高强韧性的关键.  相似文献   

13.
Effects of Ni addition on the mechanical properties of TiB2/SiC composites produced by RHP according to the chemical reaction Si+2TiH2+B4C→2TiB2+SiC+2H2↑ have been investigated. The fracture strength and Vickers hardness reach their highest values at 2 wt % Ni content, but the fracture toughness reaches its lowest value at this Ni content. Suitable Ni content can enhance the boundary strength of the composites and it is supported by SEM observation and residual stress measurement by XRD technique. On the other hand, the results of the residual stress measurement show that the residual machining stresses in the surface layer of the specimens are not constant but change with different directions. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
15.
16.
The mechanical properties and microstructural evolution of Al 6061 alloy subjected to cryorolling and warm rolling have been investigated in the present work. The Al 6061 alloy was subjected to thickness reduction of 70% by cryorolling followed by thickness reduction of 20% by warm rolling. The cryorolled + warmrolled (CR + WR) samples were characterized by Electron back scattered diffraction (EBSD) technique, Differential scanning calorimetry (DSC), X-Ray diffraction (XRD) analysis and Transmission electron microscopy (TEM) technique to substantiate the role of deformation strain and temperature on their microstructural features and compared with cryorolled (CR) samples. The CR + WR samples showed a significant improvement in tensile strength (376 MPa) and partial improvement in ductility (5%) as measured from tensile testing. It is mainly due to the combined effect of partial grain refinement, solid solution strengthening, dislocation hardening, dynamic recovery, and dynamic ageing during cryorolling and warm rolling. The effect of ageing on CR + WR samples was investigated and the optimum ageing condition was found to be 45 h at 125 °C, which gives improved tensile strength of (406 MPa) and good tensile ductility (10%). The tensile strength of cryorolled + warm rolled + peak aged (CR + WR + PA) sample (406 MPa) was found to be 11.2% more than that of cryorolled + peak aged (CR + PA) sample (365 MPa). During peak ageing treatment, the strength has been retained by pinning of dislocations through nanosized precipitates generated during warm rolling and it has been improved further by precipitation of the remnant dissolved second phase in the matrix. However, the observed ductility of CR + PA sample was 13% more than CR + WR + PA sample due to low dislocation density after ageing.  相似文献   

17.
刘海涛  马东旭  刘振宇  王国栋 《功能材料》2012,43(23):3232-3235,3239
研究了薄板坯连铸连轧流程(TSCR)条件下热轧工艺对3.2%Si-0.7%Al无取向硅钢组织、织构演变及磁性能的影响规律。结果表明,提高均热温度和热轧温度有助于获得粗大的变形组织和强烈的{001}〈110〉织构,进而对后续的组织、织构演变进程及磁性能产生有利的遗传影响。与低温均热和低温热轧相比,高温均热和高温热轧得到的最终成品板的再结晶晶粒较粗大,λ纤维再结晶织构较强而γ纤维再结晶织构较弱,磁感应强度较高。  相似文献   

18.
CuZrAlTiNi High entropy alloy (HEA) coating was synthesized on T10 substrate using mechanical alloying (MA) and vacuum hot pressing sintering (VHPS) technique. The MA results show that the final product of as-milled powders is amorphous phase. The obtained coating sintered at 950 °C is compact and about 0.9 mm in thickness. It is composed of a couple of face-centered cubic (FCC), one body-centered cubic (BCC) solid solutions and AlNi2Zr phase. The interface strength between coating and substrate is 355.5 MPa measured by three point bending test. Compared with T10 substrate, the corrosion resistance of CuZrAlTiNi HEA coating is enhanced greatly in the seawater solution, which is indicated by the higher corrosion potential, wider passivation region, and secondary passivation. The average microhardness of the coating reaches 943 HV0.2, and is about 3.5 times higher than the substrate, which is mainly ascribed to the uniformly dispersed nano-size precipitates, phase boundary strengthening and solid solution strengthening. Moreover, the wear resistance of the coating is slightly improved in comparison with the substrate.  相似文献   

19.
热轧C-Si-Mn系TRIP钢的组织与力学性能   总被引:1,自引:1,他引:0  
为了探讨热轧TRIP钢的制备工艺与其组织及力学性能的关系,采用热轧控冷工艺在实验室制备了C-Si-Mn系TRIP钢,利用光学显微镜、扫描电镜及透射电镜对试验钢的组织进行了观察,利用能谱仪对试验钢中的夹杂进行了观察.研究得到试验钢的力学性能为:σb=605 Pa,σs=440 Pa,δ=28.4%,σs/σb=0.73.定量金相检测结果表明,试验钢中三相含量分别为:残余奥氏体5.6%,铁素体67.6%,贝氏体26.8%.  相似文献   

20.
《Composites》1993,24(2):177-183
The fracture toughness of sintered silicon carbide (α-SiC) and silicon carbide reinforced with particulate titanium diboride (TiB2/SiC) has been evaluated using specimens in bending containing chevron notches and through-thickness precracks at ambient and elevated temperatures in air and in vacuum. Fracture toughness values measured from through-thickness precracked test-pieces are lower at all test temperatures. The particulate reinforcement has been shown to toughen the matrix significantly at room temperature only. At the test temperature of 1200°C the difference in toughness between the two materials is reduced and increasing the temperature to 1600°C further reduces this difference, to the extent that the two materials have values of fracture toughness which are indistinguishable. This provides strong evidence that the dominant toughening mechanism in the composite is the effect of thermal residual stresses which are relieved as the temperature is increased. Fractographic observations suggest that the bonding between the SiC and TiB2 particulate is relatively weak because interfacial decohesion of particles is observed at all test temperatures. Nevertheless, surface roughness measurements indicate that there may also be a contribution to the toughness from increased crack deflection in the composite material at room temperature only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号