首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We used psychometric techniques and neurophysiological recordings to study the role of the putamen in somesthetic perception. Four monkeys were trained to categorize the speed of moving tactile stimuli. Animals performed a task in which one of two target switches had to be pressed with the right hand to indicate whether the speed of probe movement across the glabrous skin of the left, restrained hand was low or high. During the task we recorded the activity of neurons in the putamen contralateral (right) and ipsilateral (left) to the stimulated hand. We found different types of neuronal responses, all present in the right and left putamen. Some neurons responded during the stimulus period, others responded during the hand-arm movement used to indicate categorization, and others responded during both of these periods. The responses of many neurons did not vary either with the speed of the stimuli or in relation to the categorization process. In contrast, neurons of a particular type responded differentially: their activity reflected whether stimulus speed was low or high. These differential responses occurred during the stimulus and hand-arm motion periods. A number of the nondifferential and differential neurons were studied when the same stimuli used in the categorization task were delivered passively. Few neurons with nondifferential discharges, and none of the differential neurons, responded in this condition. In a visually cued control task we studied the possibility that the differential responses were associated with the intention to press or with the trajectory of the hand to one of the target switches. In this condition, a light turned on instructed the animal which target switch to press for a reward. Very few neurons in both hemispheres maintained the differential responses observed during the categorization task. Those neurons that discharged selectively for low or high speeds were analyzed quantitatively to produce a measure comparable with the psychometric function. The thresholds of the resulting neurometric curves for the neuronal populations were very similar to the psychometric thresholds. The activity of a large fraction of these neurons could be used to accurately predict whether the stimulus speed was low or high. The results indicate that the putamen, both contralateral and ipsilateral to the stimulated hand, contains neurons that discharge in response to the somesthetic stimuli during the categorization task. Those neurons that respond irrespective of the stimulus speed appear to be involved in the general sensorimotor behavior of the animal during the execution of the task. The results suggest that the putamen may play a role in bimanual tasks. The recording of neurons in the right and left putamen whose activities correlate with the speed categories suggests that this region of the basal ganglia, in addition to its role in motor functions, is also involved in the animal's decision process.  相似文献   

2.
Observations of single neurons in the primary motor cortex of 1 monkey provided evidence that preliminary perceptual information reaches the motor system before perceptual analysis is complete. Neurons were recorded during a task in which 1 stimulus was assigned to a wrist flexion response and another was assigned to wrist extension. Two stimuli were assigned to a no-go response; each was visually similar to either the flexion or the extension stimulus. When a no-go stimulus was presented, neurons responded with weaker versions of the discharge patterns exhibited to the visually similar stimulus requiring a movement, suggesting that neurons receive partial perceptual information favoring that movement. Functionally separate neuronal populations were identified, and differences in the activations of these provide evidence about the functional effects of preliminary perceptual output on movement control processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
PURPOSE: Optokinetic nystagmus (OKN) in young infants typically shows a temporal-to-nasal asymmetry under monocular viewing conditions. The neural basis for this asymmetry has been a matter of debate. One idea is that the OKN asymmetry reflects a similar asymmetry in the directional sensitivity of primary visual cortical (V1) neurons. An alternative hypothesis is that the OKN asymmetry is due to an immaturity in the ability of cortical neurons to influence the activity of subcortical structures that directly control OKN. We addressed this issue by studying the directional sensitivity of V1 neurons in young infant monkeys. METHODS: The neuronal activity of V1 units was recorded from anesthetized and paralyzed rhesus monkeys ranging in age from 6 days to 8 weeks using standard extracellular single-unit recording methods. For comparison, V1 units from normal adult monkeys were also studied. Using drifting sinusoidal gratings of the optimal spatial frequency and a moderate contrast, we measured the responsiveness of individual units to 24 directions of stimulus movement. The preferred stimulus direction and the magnitude of the directional response bias were determined by a vector summation method. RESULTS: No clear signs of nasotemporal asymmetries in direction tuning were found in our cell population from infant monkeys. However, the overall directional sensitivity and the peak monocular response amplitudes of these units were significantly lower, and binocular suppression was greater during the first 4 weeks of life than in adults. CONCLUSIONS: The OKN asymmetry in young infants may be more closely associated with the lower overall directional sensitivity and the subnormal responsiveness of V1 neurons rather than with an obvious asymmetry in the directional properties of V1 neurons.  相似文献   

4.
The tonotopicity of the cat's primary auditory cortex (AI) is thought to provide the framework for frequency-specific processing in that field. This study was designed to assess this postulate by examining the spatial distribution of neurons within AI that are activated by a single tonal frequency delivered to the contralateral ear. Distributions obtained at each of several stimulus levels were then compared to assess the influence of stimulus amplitude on the spatial representation of a given stimulus frequency in AI. Data were obtained from 308 single units in AI of four adult, barbiturate-anesthetized cats, using extracellular recording methods. Stimuli were 40-ms tone pulses presented through calibrated, sealed stimulating systems. In each animal, the CF (stimulus frequency to which the unit is most sensitive), threshold at CF, response/level function at CF, and binaural interactions were determined for isolated neurons (usually one per track) in 60-90 electrode tracks. For each unit, regardless of its CF, responses to 40 repetitions of contralateral tones of a single frequency, presented at each of four or five sound pressure levels (SPLs) in the range from 10 to 80 dB were obtained. Different test frequencies were used in each of four cats (1.6, 8.0, 11.0, and 16.0 kHz). For tones of each SPL, we generated maps of the response rates across the cortical surface. These maps were then superimposed on the more traditional maps of threshold CF. All units whose CF was equal to the test frequency could be driven at some SPL, given an appropriate monaural or binaural configuration of the stimulus. There was a clear spatial segregation of neurons according to the shapes of their CF tone response/level functions. Patches of cortex, often occupying more than 2 mm2, seemed to contain only monotonic or only nonmonotonic units. In three cortices, a patch of nonmonotonic cells was bounded ventrally by a patch of monotonic cells, and in one of these cases, a second patch of monotonic cells was found dorsal to the nonmonotonic patch. Contralateral tones of any given SPL evoked excitatory responses in discontinuous cortical territories. At low SPLs (10, 20 dB), small foci of activity occurred along the isofrequency line representing the test frequency. Many of these cells had nonmonotonic response/level functions. (ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The effects of the stimulus duration (10 to 300 ms) on the responses of chinchilla inferior colliculus neurons to pure tones were studied in 41 units. The responses of the majority of the neurons (90%) were classified as sustained, onset, pause with onset peak and pause without onset peak response patterns. Three neurons were found to have response to the stimulus offset (offset response pattern). One neuron responded to the sound with the decrease of the spontaneous discharge rate (inhibitory response pattern). The responses restricted within the stimulus duration could be simply predicted from the peristimulus time histogram (PSTH) to the longer duration. The leading part of the PSTH to the longer stimulus duration resembled that to the shorter stimulus duration. The function of the spike number versus duration was correlated with the PSTH patterns. The response following the stimulus offset (including inhibitory response) could vary with the stimulus duration nonmonotonically and show a band-pass or band-reject property. Overall, four (about 10%) of the neurons could be regarded as duration-tuned units. The duration selectivity could be understood by the interaction between the ongoing and the offset process of the neurons.  相似文献   

6.
Left–right keypresses to numerals are faster for pairings of small numbers to left response and large numbers to right response than for the opposite pairings. This spatial numerical association of response codes (SNARC) effect has been attributed to numbers being represented on a mental number line. We examined this issue in 3 experiments using a transfer paradigm. Participants practiced a number magnitude-judgment task or spatial stimulus–response compatibility task with parallel or orthogonal stimulus–response dimensions prior to performing a parity-judgment task. The SNARC effect was enhanced following a small–left/large–right magnitude mapping but reversed following a small–right/large–left mapping, indicating that associations between magnitude and response defined for the magnitude-judgment task were maintained for the parity-judgment task. The SNARC effect was unaffected by practice with compatible or incompatible spatial mapping for the parallel spatial task but was larger following up–right/down–left mapping than up–left/down–right mapping for the orthogonal spatial task. These results are inconsistent with the SNARC effect being due to a horizontal number line representation but consistent with a view that correspondence of stimulus and response code polarities contributes to the effect. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
We recorded the activity of single neurons in the middle temporal (MT) and middle superior temporal (MST) visual areas in two macaque monkeys while the animals performed a smooth pursuit target selection task. The monkeys were presented with two moving stimuli of different colors and were trained to initiate smooth pursuit to the stimulus that matched the color of a previously given cue. We designed these experiments so that we could separate the component of the neuronal response that was driven by the visual stimulus from an extraretinal component that predicted the color or direction of the selected target. We found that for all cells in MT and MST the response was primarily determined by the visual stimulus. However, 14% (8 of 58) of MT neurons and 26% (22 of 84) of MST neurons had a small predictive component that was significant at the P < or = 0.05 level. In some cells, the predictive component was clearly related to the color of the intended target, but more often it was correlated with the direction of the target. We have previously documented a systematic shift in the latency of smooth pursuit that depends on the relative direction of motion of the two stimuli. We found that neither the latency nor the amplitude of neuronal responses in MT or MST was correlated with behavioral latency. These results are consistent with a model for target selection in which a weak selection bias for the intended target is amplified by a competitive network that suppresses motion signals related to the nonintended stimulus. It is possible that the predictive component of neuronal responses in MT and MST contributes to the selection bias. However, the strength of the selection bias in MT and MST is not sufficient to account for the high degree of selectivity shown by pursuit behavior.  相似文献   

8.
We evaluated two hypothetical codes for sound-source location in the auditory cortex. The topographical code assumed that single neurons are selective for particular locations and that sound-source locations are coded by the cortical location of small populations of maximally activated neurons. The distributed code assumed that the responses of individual neurons can carry information about locations throughout 360 degrees of azimuth and that accurate sound localization derives from information that is distributed across large populations of such panoramic neurons. We recorded from single units in the anterior ectosylvian sulcus area (area AES) and in area A2 of alpha-chloralose-anesthetized cats. Results obtained in the two areas were essentially equivalent. Noise bursts were presented from loudspeakers spaced in 20 degrees intervals of azimuth throughout 360 degrees of the horizontal plane. Spike counts of the majority of units were modulated >50% by changes in sound-source azimuth. Nevertheless, sound-source locations that produced greater than half-maximal spike counts often spanned >180 degrees of azimuth. The spatial selectivity of units tended to broaden and, often, to shift in azimuth as sound pressure levels (SPLs) were increased to a moderate level. We sometimes saw systematic changes in spatial tuning along segments of electrode tracks as long as 1.5 mm but such progressions were not evident at higher sound levels. Moderate-level sounds presented anywhere in the contralateral hemifield produced greater than half-maximal activation of nearly all units. These results are not consistent with the hypothesis of a topographic code. We used an artificial-neural-network algorithm to recognize spike patterns and, thereby, infer the locations of sound sources. Network input consisted of spike density functions formed by averages of responses to eight stimulus repetitions. Information carried in the responses of single units permitted reasonable estimates of sound-source locations throughout 360 degrees of azimuth. The most accurate units exhibited median errors in localization of <25 degrees, meaning that the network output fell within 25 degrees of the correct location on half of the trials. Spike patterns tended to vary with stimulus SPL, but level-invariant features of patterns permitted estimates of locations of sound sources that varied through 20-dB ranges. Sound localization based on spike patterns that preserved details of spike timing consistently was more accurate than localization based on spike counts alone. These results support the hypothesis that sound-source locations are represented by a distributed code and that individual neurons are, in effect, panoramic localizers.  相似文献   

9.
Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to ischemia. The result from the present study suggests that late depolarizing postsynaptic potential and small excitatory postsynaptic potential neurons may be irreversibly injured while non-late depolarizing postsynaptic potential neurons may be those that survive the ischemic insult. Alterations of synaptic transmission may be associated with the pathogenesis of postischemic neuronal injury.  相似文献   

10.
Extracellular recordings indicate that mechanisms that control contrast gain of neuronal discharge are found in the retina, thalamus and cortex. In addition, the cortex is able to adapt its contrast response function to match the average local contrast. Here we examine the neuronal mechanism of contrast adaptation by direct intracellular recordings in vivo. Both simple (n = 3) and complex cells (n = 4) show contrast adaptation during intracellular recording. For simple cells, that the amplitude of fluctuations in membrane potential induced by a drifting grating stimulus follows a contrast response relation similar to lateral geniculate relay cells, and does not reflect the high gain and adaptive properties seen in the action potential discharge of the neurons. We found no evidence of significant shunting inhibition that could explain these results. In complex cells there was no change in the mean membrane potential for different contrast stimuli or different states of adaptation, despite marked changes in discharge rate. We use a simplified electronic model to discuss the central features of our results and to explain the disparity between the contrast response functions of the membrane potential and action potential discharge in simple cells.  相似文献   

11.
1. Rostral dorsal accessory olive (rDAO) neurons are sensitive to light touch but have little or no discharge during active movement. We hypothesize that sensitivity of the rDAO is reduced during movement. To test this hypothesis, we evaluated sensitivity of rDAO neurons as cats reached out and retrieved a handle. On selected trials, mechanical or electrical perturbations to the forelimb were presented, and responses of rDAO neurons to the disturbances were recorded. 2. All rDAO units were highly sensitive to somatosensory stimuli during periods of stance. The cells responded to stimuli such as touch to hairs or light taps to the platform on which the cat was standing. 3. Discharges of rDAO neurons showed little or no synchronization to any aspect of the reaching task. rDAO neurons failed to fire to mechanical perturbations of the food handle during retrieval or hold phases of the task, even when their receptive fields included the surface of the paw in contact with the handle. 4. Electrical stimulation of the skin produced the greatest evoked response at all rDAO recording sites when the cats were at stance. Stimulation at any time during the reaching task, including periods of holding and licking, produced lower-amplitude evoked responses. The reduction in evoked response could be large and was restricted to the limb performing the task. 5. The data support the hypothesis that the cutaneous sensitivity of the rDAO is reduced during behavior. However, the inhibition does not appear to be tailored to specific times during the task or to neurons with specific receptive field locations on the actively moving limb. The reduction in sensitivity is as likely to be dependent on limb posture as on movement. We conclude that the rDAO discharge provides the cerebellum with information about vibration or contact during stance; it does not provide reliable information about undisturbed or disturbed movement. Climbing fiber input from rDAO might be useful in the preparation to make a movement, but it is probably not useful for correction of movement errors.  相似文献   

12.
Detection of a sensory stimulus is facilitated when attention is directed towards the stimulus source. Neuronal substrates for this psychological effect were studied in monkeys performing an attention-demanding task, by simultaneous recording of neuronal activity and pupillary dilation as an indicator of attentive state. We found that neurons in the postcentral somatosensory cortex (SI) started to discharge concurrent with the pupil dilation onset which occurred well before the somatosensory stimulus. Neuronal firing rates were positively correlated with the degree of dilation, suggesting that the SI neural activity is under the direct influence of the attentional process.  相似文献   

13.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

14.
BACKGROUND: Mammalian retinal ganglion cells have been traditionally classified on the basis of morphological and functional criteria, but as yet little is known about the intrinsic membrane properties of these neurons. This study has investigated these properties by making patch-clamp recordings from morphologically identified ganglion cells in the intact retina. RESULTS: The whole-cell configuration of the patch-clamp technique was used to assess the temporal tuning characteristics of alpha and beta cells, the two most extensively studied ganglion cell classes. Fourier analysis was used to examine discharge patterns in response to sinusoidal currents of different frequencies (1-50 Hz). With few exceptions, neurons responded in a stereotypic fashion to changes in temporal modulation, with their output initially increasing and then decreasing as a function of stimulus frequency. Moreover, peak responses in both cell classes were obtained at equivalent temporal frequencies. At high stimulus rates, response probability decreased, but the spikes remained phase-locked to the stimulus cycle, thereby enabling populations of cells to convey temporal information. A small number of ganglion cells did not show an appreciable decrease in output as a function of stimulus frequency, but these cells were not confined to either ganglion cell class. CONCLUSIONS: These findings provide the first evidence that the intrinsic temporal properties of alpha and beta cells are alike. Furthermore, the responses obtained to direct current injections were strikingly similar to those described previously with temporally modulated visual stimuli, suggesting that intrinsic membrane properties may shape the visual responses of alpha and beta cells to a larger degree than has been commonly assumed.  相似文献   

15.
Corticofugal modulation on activity of the medial geniculate body (MGB) was examined by locally activating the primary auditory cortex (AI) and looking for effects on the onset responses of MGB neurons to acoustic stimuli. Of 103 MGB neurons recorded from 13 hemispheres of 11 animals, 91 neurons (88%) showed either a facilitatory or inhibitory effect or both; of these neurons, 72 showed facilitatory effects and 25 inhibitory effects. The average facilitatory effect was large, with a mean increase of 62.4%. Small inhibitory effects (mean: -16.2%) were obtained from a few neurons (6 of 103) when a pure tone stimulus was used, whereas the effect became larger and more frequent when a noise burst stimulus was used (mean: -27.3%, n = 22 of 27 neurons). Activation of an AI site having the same best frequency (BF) as the MGB neuron being recorded from produced mainly a facilitatory effect on MGB neuronal responses to pure tones. Activation of AI at a site neighboring the BF site produced inhibitory effects on the MGB response when noise burst stimuli were used. We found that the effective stimulation sites in AI that could modulate MGB activity formed patchlike maps with a diameter of 1.13 +/- 0.09 (SE) mm (range 0.6-1.9 mm, n = 15) being larger than the patches of thalamocortical terminal fields. Examining the effects of sound intensities, of 18 neurons tested 9 neurons showed a larger effect for low-sound-intensity stimuli and small or no effects for high-sound-intensity stimuli. These were named low-sound-intensity effective neurons. Five neurons showed high sound intensity effectiveness and four were non-intensity specific. Most low-sound-intensity effective neurons were monotonic rate-intensity function neurons. The AI cortical modulatory effect was frequency specific, because 15 of 27 neurons showed a larger facilitatory effect when a BF stimulus was used rather than a stimulus of any other frequency. The corticothalamic connection between the recording site in MGB and the most effective stimulation site in AI was confirmed by injecting wheat germ agglutinin-horseradish peroxidase tracer at the stimulation site and producing a small lesion in the recording site. The results suggest that 1) the large facilitation effects obtained by AI activation at the region that directly projected to the MGB could be the result mainly of the direct projection terminals to the MGB relay neurons; 2) the large size patches of the effective stimulation site in AI could be due to widely ramifying corticothalamic projections; and 3) the corticofugal projection selectively gates auditory information mainly by a facilitatory effect, although there is also an inhibitory effect that depends on the sound stimulus used.  相似文献   

16.
A fully recurrent neural network model was optimized to perform a spatial delayed matching-to-sample task (DMS). In DMS, a stimulus is presented at a sample location, and a match is reported when a subsequent stimulus appears at that location. Stimuli elsewhere are ignored. Computationally, a DMS system could consist of memory and comparison components. The model, although not constrained to do so, worked by using two corresponding classes of neurons in the hidden layer: storage and comparator units. Storage units form a dynamical system with one fixed point attractor for each sample location. Comparator units constitute a system receiving input from these storage units as well as from current input stimuli. Both unit types were tuned directionally. These two sources of information combine to create unique patterns of activity that determine whether a match has occurred. In networks with abundant hidden units, the storage and comparator functions were distributed so that individual units took part in both. We compared the model with single-neuron recordings from premotor (PM) and prefrontal (PF) cortex. As shown previously, many PM and PF neurons behaved like storage units. In addition, both regions contain neurons that behave like the comparator units of the model and appear to have dual functionality similar to that observed in the model units. No neuron in either area had properties identical to those of the match output neuron of the model. However, four PF neurons and one PM neuron resembled the output signal more closely than any of the hidden units of the model.  相似文献   

17.
In this study intracellular recording techniques were used to study the synaptic events related to phase-locking of cochlear nucleus cells to low frequency stimuli. A variable degree of phase-locking was noted even with units of the same low characteristic frequency. With low frequency phase-locking units an excitatory postsynaptic potential (EPSP) occurred in response to each period of the frequency stimulus, but the probability of an action potential occurring decreased as the frequency of the stimulus was raised. Complex units were described which phase-locked at lower frequencies of stimulation but did not at higher frequencies where the temporal pattern of firing to tone burst stimulation changed as well. Results are discussed as they relate to the frequency following response recorded with gross electrodes in the lower auditory pathway and the relationship to frequency coding in the auditory pathway.  相似文献   

18.
Impulse activity was recorded extracellularly from noradrenergic neurons in the nucleus locus coeruleus of three cynomolgus monkeys performing a visual discrimination (vigilance) task. For juice reward, the subjects were required to release a lever rapidly in response to an improbable target stimulus (20% of trials) that was randomly intermixed with non-target stimuli presented on a video display. All locus coeruleus neurons examined were phasically and selectively activated by target stimuli in this task. Other task events elicited no consistent response from these neurons (juice reward, lever release, fix spot stimuli, non-target stimuli). With reversal of the task contingency, locus coeruleus neurons ceased responding to the former target stimuli, and began responding instead to the new target (old non-target) stimuli. In addition, the latency of locus coeruleus response to target stimuli increased after reversal (by about 140 ms) in parallel with a similar increase in the latency of the behavioral response. These results indicate that the conditioned locus coeruleus responses reflect stimulus meaning and cognitive processing, and are not driven by physical sensors attributes. Notably, the reversal in locus coeruleus response to stimuli after task reversal occurred rapidly, hundreds of trials before reversal was expressed in behavioral responses. These findings indicate that conditioned responses of locus coeruleus neurons are plastic and easily altered by changes in stimulus meaning, and that the locus coeruleus may play an active role in learning the significance of behaviorally important stimuli.  相似文献   

19.
Single unit recording in rat nucleus accumbens (NAcc) was used to ascertain NAcc neuronal activity in mediating of reward including its anticipation. Of the 103 neurons investigated, 63% showed some response in connection with the task activity. Of these, 20 units responded during delivery of the primary reward (food and/or water) and five responded during the time period preceding reward if the reward was delayed (four to food, one to water). These result suggest that NAcc neurons responded not only to the delivery of primary reward and task inducing anticipation of reward, but also represent the difference of reward quality between food and water specifically.  相似文献   

20.
It is not known whether psychophysical performance depends primarily on small numbers of neurons optimally tuned to specific visual stimuli, or on larger populations of neurons that vary widely in their properties. Tuning bandwidths of single cells can provide important insight into this issue, yet most bandwidth measurements have been made using suprathreshold visual stimuli, whereas psychophysical measurements are frequently obtained near threshold. We therefore examined the directional tuning of cells in the middle temporal area (MT, or V5) using perithreshold, stochastic motion stimuli that we have employed extensively in combined psychophysical and physiological studies. The strength of the motion signal (coherence) in these displays can be varied independently of its direction. For each MT neuron, we characterized the directional bandwidth by fitting Gaussian functions to directional tuning data obtained at each of several motion coherences. Directional bandwidth increased modestly as the coherence of the stimulus was reduced. We then assessed the ability of MT neurons to discriminate opposed directions of motion along six equally spaced axes of motion spanning 180 degrees. A signal detection analysis yielded neurometric functions for each axis of motion, from which neural thresholds could be extracted. Neural thresholds remained surprisingly low as the axis of motion diverged from the neuron's preferred-null axis, forming a plateau of high to medium sensitivity that extended approximately 45 degrees on either side of the preferred-null axis. We conclude that directional tuning remains broad in MT when motion signals are reduced to near-threshold values. Thus directional information is widely distributed in MT, even near the limits of psychophysical performance. These observations support models in which relatively large numbers of signals are pooled to inform psychophysical decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号