首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Silver ions and silver-containing compounds have been used as topical antimicrobial agents in a variety of clinical situations. We have previously shown that the enzyme phosphomannose isomerase (PMI) is essential for the biosynthesis of Candida albicans cell walls. In this study, we find that PMI can be inhibited by silver ions. This process is shown to be irreversible, and is a two-step process, involving an intermediate complex with a dissociation constant, Ki, of 59 +/- 8 microM, and a maximum rate of inactivation of 0.25 +/- 0.04 min-1 in 50 mM Hepes buffer, pH 8.0 at 37 degrees C. The enzyme can be protected against this inactivation by the substrate mannose 6-phosphate, with a dissociation constant of 0.31 +/- 0.04 mM, close to its Km value. Flamazine (silver sulfadiazine) is a silver-containing antibiotic which is used clinically as a topical antimicrobial and antifungal agent. We compared the ability of silver sulfadiazine and two other silver-containing compounds to irreversibly inactivate C. albicans PMI. The addition of the organic moiety increased the affinity of the compounds, with silver sulfadiazine showing a Ki of 190 +/- 30 nM. In all cases, the maximum inhibition rate was similar, implying a similar rate-determining step. Silver sulfadiazine does not inhibit Escherichia coli PMI, and this suggests a role of the only free cysteine, Cys-150, in the inactivation process. To confirm this, we mutated this residue to alanine in C. albicans PMI. The resultant Cys150 --> Ala mutant protein showed similar Vm and Km values to the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The sugar-induced inhibition of malolactic fermentation in cell suspensions of Leuconostoc oenos, recently reclassified as Oenococcus oeni (L. M. T. Dicks, F. Dellaglio, and M. D. Collins, Int. J. Syst. Bacteriol. 45:395-397, 1995) was investigated by in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and manometric techniques. At 2 mM, glucose inhibited malolactic fermentation by 50%, and at 5 mM or higher it caused a maximum inhibitory effect of ca. 70%. Galactose, trehalose, maltose, and mannose caused inhibitory effects similar to that observed with glucose, but ribose and 2-deoxyglucose did not affect the rate of malolactic activity. The addition of fructose or citrate completely relieved the glucose-induced inhibition. Glucose was not catabolized by permeabilized cells, and inhibition of malolactic fermentation was not observed under these conditions. 31P NMR analysis of perchloric acid extracts of cells obtained during glucose-malate cometabolism showed high intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate, and glycerol-3-phosphate. Glucose-6-phosphate, 6-phosphogluconate, and NAD(P)H inhibited the malolactic activity in permeabilized cells or cell extracts, whereas NADP+ had no inhibitory effect. The purified malolactic enzyme was strongly inhibited by NADH, whereas all the other above-mentioned metabolites exerted no inhibitory effect, showing that NADH was responsible for the inhibition of malolactic activity in vivo. The concentration of NADH required to inhibit the activity of the malolactic enzyme by 50% was ca. 25 microM. The data provide a coherent biochemical basis to understand the glucose-induced inhibition of malolactic fermentation in L. oenos.  相似文献   

3.
The mannitol-1-phosphate dehydrogenase (M1PDH) (EC 1.1.1.17) from Streptococcus mutans strain FA-1 was purified to approximately a 425-fold increase in specific activity with a 29% recovery of total enzyme units, using a combination of (i) streptomycin sulfate and ammonium sulfate precipitation and (ii) diethyl-aminoethyl-cellulose (DE-52), agarose A 0.5M, and agarose-nicotinamide adenine dinucleotide (NAD) affinity column chromatography. Polyacrylamide gel electrophoresis of the purified enzyme preparation showed a single protein component that coincided with a band of M1PDH activity. The enzyme had a molecular weight of approximately 45,000 and was stable for long periods of time when stored at -80 degrees C in the presence of beta-mercaptoethanol. Its activity was not affected by mono- or divalent cations, and high concentrations of ethylenedia-minetetraacetic acid were not inhibitory. The M1PDH catalyzed both the NAD-dependent oxidation of mannitol-1-phosphate and the reduced NAD (NADH)-dependent reduction of fructose-6-phosphate. The forward reaction was highly specific for mannitol-1-phosphate and NAD, whereas the reverse reaction was highly specific for NADH and fructose-6-phosphate. The K(m) values for mannitol-1-phosphate and NAD were 0.15 and 0.066 mM, respectively, and the K(m) values for fructose-6-phosphate and NADH were 1.66 and 0.016 mM, respectively. The forward and reverse reactions catalyzed by the M1PDH from S. mutans appeared to be under cellular control. Both adenosine 5'-triphosphate and fructose-6-phosphate were negative effectors of the forward reaction, whereas adenosine 5'-diphosphate served as a negative effector of the reverse reaction catalyzed by the enzyme.  相似文献   

4.
5.
Fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase (Fru-6-P, 2-kinase/Fru-2,6-Pase) is a bifunctional enzyme, catalyzing the interconversion of beta-D-fructose- 6-phosphate (Fru-6-P) and fructose-2,6-bisphosphate (Fru-2,6-P2) at distinct active sites. A mutant rat testis isozyme with an alanine replacement for the catalytic histidine (H256A) in the Fru-2,6-Pase domain retains 17% of the wild type activity (Mizuguchi, H., Cook, P. F., Tai, C-H., Hasemann, C. A., and Uyeda, K. (1998) J. Biol. Chem. 274, 2166-2175). We have solved the crystal structure of H256A to a resolution of 2. 4 A by molecular replacement. Clear electron density for Fru-6-P is found at the Fru-2,6-Pase active site, revealing the important interactions in substrate/product binding. A superposition of the H256A structure with the RT2K-Wo structure reveals no significant reorganization of the active site resulting from the binding of Fru-6-P or the H256A mutation. Using this superposition, we have built a view of the Fru-2,6-P2-bound enzyme and identify the residues responsible for catalysis. This analysis yields distinct catalytic mechanisms for the wild type and mutant proteins. The wild type mechanism would lead to an inefficient transfer of a proton to the leaving group Fru-6-P, which is consistent with a view of this event being rate-limiting, explaining the extremely slow turnover (0. 032 s-1) of the Fru-2,6-Pase in all Fru-6-P,2-kinase/Fru-2,6-Pase isozymes.  相似文献   

6.
Phosphatidylinositol-4,5-bisphosphate occupies a central role in signal transduction and in cellular transformation. Phosphatidylinositol-4,5-bisphosphate is produced by the enzymatic phosphorylation of phosphatidylinositol-4-phosphate by phosphatidylinositolphosphate kinase (EC 2.7.1.68). Inhibition of this enzyme might conceivably lowers the cellular pool of phosphatidylinositol-4,5-bisphosphate, thus constituting a feasible control point in regulating signal transduction and cellular transformation. Morin, a plant flavonoid, was demonstrated to exhibit in vitro inhibitory action on phosphatidylinositolphosphate kinase extracted from rat brain. This inhibition of enzymatic activity was found to be dose-dependent, with an IC50 value of approximately 10 microM morin. Lineweaver-Burk transformation of the inhibition data indicates that inhibition was competitive with respect to ATP. The Ki was calculated to be 5.15 x 10(-6) M. Inhibition was uncompetitive with respect to phosphatidylinositol-4-phosphate. The Ki was determined to be 0.94 x 10(-5) M. Administration of morin to rats led to a decrease in phosphatidylinositolphosphate kinase activity in brain extracts. This in vivo action of morin was found to be dose-dependent and time-dependent. These effects of morin on rat brain phosphatidylinositolphosphate kinase activity are discussed in relation to the other reported biological actions of this flavonoid.  相似文献   

7.
The cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-II receptor) undergoes constitutive endocytosis, mediating the internalization of two unrelated classes of ligands, mannose 6-phosphate (Man-6-P)-containing acid hydrolases and insulin-like growth factor II (IGF-II). To determine the role of ligand valency in M6P/IGF-II receptor-mediated endocytosis, we measured the internalization rates of two ligands, beta-glucuronidase (a homotetramer bearing multiple Man-6-P moieties) and IGF-II. We found that beta-glucuronidase entered the cell approximately 3-4-fold faster than IGF-II. Unlabeled beta-glucuronidase stimulated the rate of internalization of 125I-IGF-II to equal that of 125I-beta-glucuronidase, but a bivalent synthetic tripeptide capable of occupying both Man-6-P-binding sites on the M6P/IGF-II receptor simultaneously did not. A mutant receptor with one of the two Man-6-P-binding sites inactivated retained the ability to internalize beta-glucuronidase faster than IGF-II. Thus, the increased rate of internalization required a multivalent ligand and a single Man-6-P-binding site on the receptor. M6P/IGF-II receptor solubilized and purified in Triton X-100 was present as a monomer, but association with beta-glucuronidase generated a complex composed of two receptors and one beta-glucuronidase. Neither IGF-II nor the synthetic peptide induced receptor dimerization. These results indicate that intermolecular cross-linking of the M6P/IGF-II receptor occurs upon binding of a multivalent ligand, resulting in an increased rate of internalization.  相似文献   

8.
When tested in the presence of an inhibitor of sorbitol dehydrogenase, both mannitol and sorbitol caused a progressive inhibition of the detritiation of [2-3H]glucose in isolated rat hepatocytes. The purpose of the present work was to investigate the possibility that this effect was mediated by the regulatory protein of glucokinase. When added to hepatocytes, mannitol decreased the apparent affinity of glucokinase for glucose and increased the concentration of fructose required to stimulate detritiation, without affecting the concentration of fructose 1-phosphate. Its effect could be attributed to the formation of mannitol 1-phosphate, a potent agonist of the regulatory protein, which, similarly to fructose 6-phosphate, reinforces its inhibitory action. Formation of mannitol 1-phosphate in hepatocytes was dependent on the presence of mannitol and was stimulated by compounds that increase the concentration of glucose 6-phosphate. Liver extracts catalysed the conversion of mannitol to mannitol 1-phosphate about 7 times more rapidly in the presence of glucose 6-phosphate than of ATP. The glucose 6-phosphate-dependent formation was entirely accounted for by a microsomal enzyme, glucose-6-phosphatase and was not due to a loss of latency of this enzyme. In hepatocytes in primary culture, mannitol decreased the detritiation rate and counteracted the effect of fructose to stimulate glucokinase translocation. Taken together, these results strongly support a central role played by the regulatory protein in the control of glucokinase activity and translocation in the liver, as well as a feedback control exerted by fructose 6-phosphate on this enzyme.  相似文献   

9.
The enzyme glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides has been crystallized from phosphate buffer in a form suitable for x-ray crystallographic studies. The crystals diffract to better than 2.4 A. The spacegroup is P3121 (P3221) a = 105.8 A, c = 225.1 A, V = 2.18 X 10(6) A3. The asymmetric unit probably contains a single dimer.  相似文献   

10.
A cosmid carrying the orlA gene from Aspergillus nidulans was identified by complementation of an orlA1 mutant strain with DNA from the pKBY2 cosmid library. An orlA1 complementing fragment from the cosmid was sequenced. orlA encodes a predicted polypeptide of 227 amino acids (26360 Da) that is homologous to a 211-amino-acid domain from the polypeptide encoded by the Saccharomyces cerevisiae TPS2 gene and to almost the entire Escherichia coli otsB-encoded polypeptide. TPS2 and otsB each specify a trehalose-6-phosphate phosphatase, an enzyme that is necessary for trehalose synthesis. orlA disruptants accumulate trehalose-6-phosphate and have reduced trehalose-6-phosphatate phosphatase levels, indicating that the gene encodes a trehalose-6-phosphatate phosphatase. Disruptants have a nearly-wild-type morphology at 32 degrees C. When germinated at 42 degrees C, the conidia and hyphae from disruptants are chitin deficient, swell excessively, and lyse. The lysis is almost completely remedied by osmotic stabilizers and is partially remedied by N-acetylglucosamine (GlcNAc). The activity of glutamine:fructose-6-phosphate amido-transferase (GFAT), the first enzyme unique to aminosugar synthesis, is reduced and is labile in orlA disruption strains. The findings are consistent with the hypothesis that trehalose-6-phosphate reduces the temperature stability of GFAT and other enzymes of chitin metabolism at elevated temperatures. The results extend to filamentous organisms the observation that mutations in fungal trehalose synthesis are highly pleiotropic and affect aspects of carbohydrate metabolism that are not directly related to trehalose synthesis.  相似文献   

11.
The V1 ATPase from the tobacco hornworm Manduca sexta and the Escherichia coli F1 ATPase were characterized by small-angle X-ray scattering (SAXS). The radii of gyration (Rg) of the complexes were 6.2 +/- 0.1 and 4.7 +/- 0.02 nm, respectively. The shape of the M. sexta V1 ATPase was determined ab initio from the scattering data showing six masses, presumed to be the A and B subunits, arranged in an alternating manner about a 3-fold axis. A seventh mass with a length of about 11.0 nm extends perpendicularly to the center of the hexameric unit. This central mass is presumed to be the stalk that connects V1 with the membrane domain (V(O)) in the intact V1V(O)-ATPase. In comparison, the shape of the F1 ATPase from E. coli possesses a quasi-3-fold symmetry over the major part of the enzyme. The overall asymmetry of the structure is given by a stem, assumed to include the central stalk subunits. The features of the V1 and F1 ATPase reveal structural homologies and diversities of the key components of the complexes.  相似文献   

12.
Two groups of anti-plasminogen monoclonal antibodies, whose epitope was either in the kringle 1 + 2 + 3 domain (F3P2, F11P5, F11P6, and F12P18) or the kringle 5 domain (F1P6 and F12P16), were isolated and their effects on the conformation of plasminogen were explored. All antibodies except F1P6 had 3- to 10-fold higher affinity toward Lys-plasminogen than Glu-plasminogen. F1P6 exhibited a comparable affinity to Glu- and Lys-plasminogen. Among these, only F11P5 binding was inhibited by epsilon-amino-nu-caproic acid (EACA) in a concentration-dependent manner, with half maximal inhibition at 3 mM. From a competition assay, we concluded that the epitopes of F11P5, F11P6, and F12P18 should be very close, and located at or near the low affinity lysine binding site on the kringle 2 + 3. These three antibodies dramatically enhanced the binding of Glu-plasminogen to the other antibodies, except to F1P6. Interestingly, F3P2, whose non-overlapping epitope was in the kringle 2 + 3 domain, also augmented the binding of Glu-plasminogen to the other antibodies. In contrast, we did not observe enhanced binding of Lys-plasminogen to one antibody in the presence of the other antibodies, and the binding of Glu-plasminogen to these antibodies did not increase in the presence of 10 mM EACA. In the presence of these antibodies, including F1P6, Glu-plasminogen bound more efficiently to immobilized degraded fibrin, with a binding profile similar to Lys-plasminogen. All antibodies except F1P6 enhanced the conversion rate of plasminogen to plasmin remarkably. Taken together, we propose that these two groups of monoclonal antibodies can dissociate the intramolecular interactions of Glu-plasminogen and induce the conformational transition of Glu-plasminogen to Lys-plasminogen. In addition, the kringle 2 + 3 and kringle 5 structures of Glu-plasminogen liganded with EACA are distinct from the Lys-plasminogen structure.  相似文献   

13.
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.  相似文献   

14.
We evaluated levels of mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) RNA in 37 breast cancer tumors by quantitative in situ hybridization using a computer-aided image analyzer and compared them to cathepsin D RNA and protein levels in the same tissues. Breast cancer cells expressed more cathepsin D and M6P/IGFII-R RNA than fibroblasts in the same tumors. We found a significant increase of cathepsin D RNA (P = 1 x 10(-5)) and M6P/IGFII-R RNA (P = 0.02) in breast cancer cells compared to epithelial cells of benign mastopathies. There was a positive correlation (r = 0.65; P = 1 x 10(-5)) between M6P/IGFII-R and cathepsin D RNA levels measured on serial sections. This contrasted with the inverse relationship of these 2 RNA species in breast cancer cell lines where estrogen down-regulates M6P/IGFII receptor RNA levels. Moreover, in vivo we found no correlation between the M6P/IGFII-R RNA level and menopausal or estrogen receptor status, suggesting that the in vivo regulation of M6P/IGFII-R RNA differs from its in vitro regulation in cell lines. The M6P/IGFII-R RNA level was not correlated with cathepsin D status, histological grade, and tumor size but was significantly higher in lymph node-positive tumors (P = 0.047). The M6P/IGFII-R could therefore be an additional parameter to predict aggressive breast cancers, complementing cathepsin D assays and other more classical prognostic parameters.  相似文献   

15.
Retinoic acid (RA) exerts diverse biological effects in the control of cell growth in embryogenesis and oncogenesis. These effects of RA are thought to be mediated by the nuclear retinoid receptors. Mannose-6-phosphate (M6P)/insulin-like growth factor-II (IGF-II) receptor is a multifunctional membrane glycoprotein that is known to bind both M6P and IGF-II and function primarily in the binding and trafficking of lysosomal enzymes, the activation of transforming growth factor-beta, and the degradation of IGF-II. M6P/IGF-II receptor has recently been implicated in fetal development and carcinogenesis. Despite the functional similarities between RA and the M6P/IGF-II receptor, no direct biochemical link has been established. Here, we show that the M6P/IGF-II receptor also binds RA with high affinity at a site that is distinct from those for M6P and IGF-II, as identified by a photoaffinity labeling technique. We also show that the binding of RA to the M6P/IGF-II receptor enhances the primary functions of this receptor. The biological consequence of the interaction appears to be the suppression of cell proliferation and/or induction of apoptosis. These findings suggest that the M6P/IGF-II receptor mediates a RA response pathway that is important in cell growth regulation. This discovery of the interaction of RA with the M6P/IGF-II receptor may have important implications for our understanding of the roles of RA and the M6P/IGF-II receptor in development, carcinogenesis, and lysosomal enzyme-related diseases.  相似文献   

16.
The current study was undertaken so that the effects of both ischemia and ischemia + hypothermia could be examined in mammalian liver. Particular reference was made to the function of glycolysis, which is the only mechanism for energy production under these conditions. The response of adenylate pools reflected the energy imbalance created during warm ischemia within minutes of organ isolation. ATP levels and energy charge values for control (freshly isolated) livers were 1.20 +/- 0.07 and 0.49 +/- 0.02 mumol/g. Within 5 min of warm ischemia, ATP levels had dropped well below control values and by 30 min warm ischemia, ATP, AMP, and E.C. values were 0.21, 2.01, and 0.17 mumol/g, respectively. Cold ischemic livers (flushed with Marshall's citrate solution and stored on ice) exhibited similar, but more protracted, patterns of adenylate depletion (ATP and ADP) and accumulation (AMP). In both warm and cold ischemic livers, levels of fructose-6-phosphate (F6P) and fructose-1,6-bisphosphate (F1,6P2) indicated a marked activation of glycolysis at the phosphofructokinase (PFK) locus after a certain time of ischemia. Although the activations occurred at different times (30 min and 10 h for warm and cold ischemic livers, respectively), the patterns of change in levels of glycolytic metabolites associated with the PFK-catalyzed reaction were similar; levels of F6P dropped and F1,6P2 increased. Changes in metabolite levels (phosphoenol pyruvate and pyruvate) associated with another key suspect regulatory enzyme, pyruvate kinase, indicated no role in regulatory control of glycolysis during warm or cold ischemia. The activation of PFK at 30 min and 10 h of warm and cold ischemia, respectively, may reflect the accumulating effects of loss of intracellular homeostasis, which leads to impending irreversible damage.  相似文献   

17.
Comamonas acidovorans YM1609 secreted a polyhydroxybutyrate (PHB) depolymerase into the culture supernatant when it was cultivated on poly(3-hydroxybutyrate) [P(3HB)] or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] as the sole carbon source. The PHB depolymerase was purified from culture supernatant of C. acidovorans by two chromatographic methods, and its molecular mass was determined as 45,000 Da by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme was stable at temperatures below 37 degrees C and at pH values of 6 to 10, and its activity was inhibited by diisopropyl fluorophosphonate. The liquid chromatography analysis of water-soluble products revealed that the primary product of enzymatic hydrolysis of P(3HB) was a dimer of 3-hydroxybutyric acid. Kinetics of enzymatic hydrolysis of P(3HB) film were studied. In addition, a gene encoding the PHB depolymerase was cloned from the C. acidovorans genomic library. The nucleotide sequence of this gene was found to encode a protein of 494 amino acids (M(r), 51,018 Da). Furthermore, by analysis of the N-terminal amino acid sequence of the purified enzyme, the molecular mass of the mature enzyme was calculated to be 48,628 Da. Analysis of the deduced amino acid sequence suggested a domain structure of the protein containing a catalytic domain, fibronectin type III module as linker, and a putative substrate-binding domain. Electron microscopic visualization of the mixture of P(3HB) single crystals and a fusion protein of putative substrate-binding domain with glutathione S-transferase demonstrated that the fusion protein adsorbed strongly and homogeneously to the surfaces of P(3HB) single crystals.  相似文献   

18.
Xanthine dehydrogenase, a molybdenum, iron-sulfur flavoenzyme encoded in the fruit fly Drosophila melanogaster by the rosy gene, has been characterised both from the wild-type and mutant files. Enzyme assays, using a variety of different oxidising and reducing substrates were supplemented by limited molecular characterisation. Four rosy strains showed no detectable activity in any enzyme assay tried, whereas from four wild-type and three rosy mutant strains, those for the [E89K], [L127F] and [L157P]xanthine dehydrogenases (in all of which the mutation is in the iron-sulfur domain), the enzyme molecules, although present at different levels, had extremely similar or identical properties. This was confirmed by purification of one wild-type and one mutant enzyme. [E89K]xanthine dehydrogenase. These both had ultraviolet-visible absorption spectra similar to milk xanthine oxidase. Both were found to be quite stable molecules, showing very high catalytic-centre activities and with little tendency to become degraded by proteolysis or modified by conversion to oxidase or desulfo forms. In three further rosy strains, giving [G353D]xanthine dehydrogenase and [S357F]xanthine dehydrogenase mutated in the flavin domain, and [G1011E]xanthine dehydrogenase mutated in the molybdenum domain, enzyme activities were selectively diminished in certain assays. For the G353D and S357F mutant enzymes activities to NAD+ as oxidising substrate were diminished, to zero for the latter. In addition for [G353D]xanthine dehydrogenase, there was an increase in apparent Km values both for NAD+ and NADH. These findings indicate involvement of this part of the sequence in the NAD(+)-binding site. The G1011E mutation has a profound effect on the enzyme. As isolated and as present in crude extracts of the files, this xanthine dehydrogenase variant lacks activity to xanthine or pterin as reducing substrate, indicating an impairment of the functioning of its molybdenum centre. However, it retains full activity to NADH with dyes as oxidising substrate. Mild oxidation of the enzyme converts it, apparently irreversibly, to a form showing full activity to xanthine and pterin. The nature of the group that is oxidised is discussed in the light of redox potential data. It is proposed that the process involves oxidation of the pterin of the molybdenum cofactor from the tetrahydro to a dihydro oxidation state. This conclusion is fully consistent with recent information [Rom?o, M. J., Archer, M., Moura, I., Moura. J.J.G., LeGall, J., Engh, R., Schneider, M., Hof, P. & Huber, R. (1995) Science 270. 1170-1176) from X-ray crystallography on the structure of a closely related enzyme from Desulfovibrio gigas. It is proposed, that apparent irreversibility of the oxidative activating process for [G1011E]xanthine dehydrogenase, is due to conversion of its pterin to the tricyclic derivative detected by these workers. The data thus provide the strongest evidence available, that the oxidation state of the pterin can have a controlling influence on the activity of a molybdenum cofactor enzyme. Implications regarding pterin incorporation into xanthine dehydrogenase and in relation to other molybdenum enzymes are discussed.  相似文献   

19.
The main mechanism causing catabolite repression by glucose and other carbon sources transported by the phosphotransferase system (PTS) in Escherichia coli involves dephosphorylation of enzyme IIA(Glc) as a result of transport and phosphorylation of PTS carbohydrates. Dephosphorylation of enzyme IIA(Glc) leads to 'inducer exclusion': inhibition of transport of a number of non-PTS carbon sources (e.g. lactose, glycerol), and reduced adenylate cyclase activity. In this paper, we show that the non-PTS carbon source glucose 6-phosphate can also cause inducer exclusion. Glucose 6-phosphate was shown to cause inhibition of transport of lactose and the non-metabolizable lactose analogue methyl-beta-D-thiogalactoside (TMG). Inhibition was absent in mutants that lacked enzyme IIA(Glc) or were insensitive to inducer exclusion because enzyme IIA(Glc) could not bind to the lactose carrier. Furthermore, we showed that glucose 6-phosphate caused dephosphorylation of enzyme IIA(Glc). In a mutant insensitive to enzyme IIA(Glc)-mediated inducer exclusion, catabolite repression by glucose 6-phosphate in lactose-induced cells was much weaker than that in the wild-type strain, showing that inducer exclusion is the most important mechanism contributing to catabolite repression in lactose-induced cells. We discuss an expanded model of enzyme IIA(Glc)-mediated catabolite repression which embodies repression by non-PTS carbon sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号