首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
A method to produce scalable, low-resistance, high-transparency, percolating networks of silver nanowires by spray coating is presented. By optimizing the spraying parameters, networks with a sheet resistance of R(s) ≈ 50 Ω □(-1) at a transparency of T = 90% can be produced. The critical processing parameter is shown to be the spraying pressure. Optimizing the pressure reduces the droplet size resulting in more uniform networks. High uniformity leads to a low percolation exponent, which is essential for low-resistance, high-transparency films.  相似文献   

2.
Metal nanowire networks represent a promising candidate for the rapid fabrication of transparent electrodes with high transmission and low sheet-resistance values at very low deposition temperatures. A commonly encountered challenge in the formation of conductive nanowire electrodes is establishing high-quality electronic contact between nanowires to facilitate long-range current transport through the network. A new system involving nanowire ligand removal and replacement with a semiconducting sol-gel tin oxide matrix has enabled the fabrication of high-performance transparent electrodes at dramatically reduced temperatures with minimal need for post-deposition treatment.
  相似文献   

3.
We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq, at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors.  相似文献   

4.
5.
采用化学还原法,以聚乙烯砒咯烷酮(PVP)为稳定剂和形貌控制剂,乙二醇为还原剂,在L-半胱氨酸诱导下,由硝酸银快速制备了银纳米线。采用紫外-可见吸收光谱、X射线衍射、扫描电子显微镜、选区电子衍射和透射电子显微镜手段对所得产物进行表征,结果表明利用L-半胱氨酸诱导可在15min内制备直径为100nm左右,长度约几百微米的银纳米线,并具有单晶结构,根据实验结果提出了可能的银纳米线快速合成机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号