首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen ion implantation was performed on biomedical titanium alloys by using of the PBII technology to improve the surface mechanical properties for the application of artificial joints. The titanium nitride phase was characterized with X-ray photoelectron spectroscopy (XPS). The nanohardness of the titanium alloys and implanted samples were measured by using of in-situ nano-mechanical testing system (TriboIndenter). Then, the fretting wear of nitrogen ion implanted titanium alloys was done on the universal multifunctional tester (UMT) with ball-on-flat fretting style in bovine serum lubrication. The fretting wear mechanism was investigated with scanning electron microscopy (SEM) and 3D surface profiler. The XPS analysis results indicate that nitrogen diffuses into the titanium alloy and forms a hard TiN layer on the Ti6Al4V alloys. The nanohardness increases from 6.40 to 7.7 GPa at the normal load of 2 mN, which reveals that nitrogen ion implantation is an effective way to enhance the surface hardness of Ti6Al4V. The coefficients of friction for Ti6Al4V alloy in bovine serum are obviously lower than that in dry friction, but the coefficients of friction for nitrogen ion implanted Ti6Al4V alloy in bovine serum are higher than that in dry friction. Fatigue wear controls the fretting failure mechanism of nitrogen ion implanted Ti6Al4V alloy fretting in bovine serum. The testing results in this paper prove that nitrogen ion implantation can effectively increase the fretting wear resistance for Ti6Al4V alloy in dry friction, and has a considerable improvement for Ti6Al4V alloy in bovine serum lubrication.  相似文献   

2.
This study investigates the effect of titanium and nitrogen elements on the microstructures and wear behaviors of medium carbon Fe–B cast alloy. The as-cast microstructures of Fe–B cast alloy consist of the eutectic boride, pearlite, and ferrite. Moreover, the as-cast eutectic boride structures are greatly refined when titanium and nitrogen are added. The boride area fraction, average boride area, Rockwell hardness, etc., are also investigated systemically. The wear behaviors of medium carbon Fe–B cast alloy are studied by a three-body abrasive wear tester. The results show that the wear weight loss of Fe–B cast alloy with titanium and nitrogen elements is lower than that of the ordinary Fe–B cast alloy. Meanwhile, the wear mechanism of Fe–B cast alloy with different titanium and nitrogen concentrations is described and analyzed.  相似文献   

3.
低温氮气射流对钛合金高速铣削加工性能的影响   总被引:7,自引:0,他引:7  
苏宇  何宁  李亮  李新龙  赵威 《中国机械工程》2006,17(11):1183-1187
在钛合金的高速切削过程中,切削区温度很高,加速了刀具的磨损,限制了切削速度的进一步提高。为降低切削区温度、防止刀具的氧化磨损,提出在低温氮气射流条件下进行钛合金的高速铣削加工。在干铣削、浇注切削液、常温氮气油雾、低温氮气射流和低温氮气射流结合微量润滑等冷却润滑条件下进行了钛合金的高速铣削对比试验。试验结果表明,低温氮气射流结合微量润滑能够最有效地降低铣削力,抑制刀具磨损。借助扫描电镜的检测手段,研究了不同冷却润滑条件下刀具的失效形式。指出在低温氮气射流条件下高速铣削钛合金时,只要热裂纹的形成与扩展未引起刀具的崩刃及刀面的剥落,进一步降低低温氮气的温度将提高刀具的使用寿命。  相似文献   

4.
采用离子束增强沉积(IBED)技术在不锈钢1Cr18Ni9Ti衬底表面生长氮化钛薄膜以及氮离子注入,进行了干滑动摩擦磨损试验与组织结构电镜分析,表明增强沉积膜较离子注入具有更高耐磨性能。  相似文献   

5.
Extremely low wear rates have been reported for metal-on-metal total hip replacements, but concerns remain about the effects of metal ion release, dissolution rates and toxicity. Surface-engineered coatings have the potential to improve wear resistance and reduce the biological activity of the wear debris produced. The aim of this study was to examine the wear and wear debris generation from surface-engineered coatings: titanium nitride (TiN), chromium nitride (CrN) and chromium carbon nitride (CrCN) applied to a cobalt-chrome alloy (CoCr) substrate. The coatings were articulated against themselves in a simple geometry model. The wear particles generated were characterized and the cytotoxic effect on U937 macrophages and L929 fibroblasts assessed. The CrN and CrCN coatings showed a decrease in wear compared to the CoCr bearings and produced small (less than 40 nm in length) wear particles. The wear particles released from the surface engineered bearings also showed a decreased cytotoxic effect on cells compared to the CoCr alloy debris. The reduced wear volumes coupled with the reduced cytotoxicity per unit volume of wear indicate the potential for the clinical application of this technology.  相似文献   

6.
A study has been made of the sliding wear behaviour of untreated and ion implanted ultra high molecular weight polyethylene (UHMWPE) against a surface modified titanium alloy (Ti-6Al-4V) using a pin on disc apparatus. It was found that the presence of water lubrication and a very smooth counterface was necessary to maintain low wear rates of the UHMWPE. A ‘zero wear’ effect was observed when nitrogen implanted UHMWPE was tested against very smooth counterfaces (Ra ≈ 0.03 μm) of either surface oxidized or nitrogen implanted Ti-6Al-4V under water lubrication. The enhanced mechanical and physical properties of the surface treated materials are believed to be responsible for the improved wear performance.  相似文献   

7.
为提高矿用钛合金钻杆的耐磨性能,以低成本粉末冶金Ti-Al-Fe-Mo合金为研究对象,采用表面机械碾磨与固相渗碳相结合的创新方式对其表面进行复合强化处理,研究不同表面碾磨道次加渗碳处理的钛合金表面的微观组织及其显微硬度。以氮化硅球为摩擦对偶,对表面复合强化钛合金样品进行往复式滑动摩擦试验,研究钛合金表面强化层对其磨损量、摩擦因数、表面磨痕微观组织的影响规律。结果表明:表面机械碾磨方法可以在粉末钛合金表面形成梯度纳米晶结构;钛合金经过表面机械碾磨处理后可显著提高表面渗碳的深度和均匀度;经表面机械碾磨与固相渗碳复合强化处理的钛合金,其磨损量相比于单一表面渗碳的钛合金降低了近58%。表面复合强化的钛合金摩擦磨损机制以疲劳磨损、黏着磨损、氧化磨损和少量的磨粒磨损为主。  相似文献   

8.
Fretting wear of carburized titanium alloys was investigated on the universal multifunctional tester (UMT) with the ball-on-flat fretting style under bovine serum lubrication. The tangential load and friction coefficient during the fretting process were analyzed, and the evolution of fretting log during the fretting process was investigated to understand the wear mechanism of the titanium alloy and carburized titanium alloy. Furthermore, the wear scar was examined using a SEM and three-dimension surface profiler. It was found that the friction coefficient of the titanium alloy increased faster than that of carburized titanium alloy in the first stage under serum lubrication, and then remained steady with a similar value in the second stage. The Ft-D curve indicated that there was wear mechanism transition from gross slip to mixed stick and slip. Finally, it was observed that there was a slight damage of the titanium alloy and carburized titanium alloy showed excellent performance during the fretting wear process under serum lubrication. All of the results suggested that carburized titanium alloy was a potential candidate for the stem material in artificial joints.  相似文献   

9.
The influence of combined treatment including intensive plastic deformation and ion-beam nitriding on the structure and tribological behavior of VT1–00 titanium alloy is studied. Intensive plastic deformation of titanium is shown to result in the formation of submicrocrystalline structure and 50–60% greater hardness of the alloy with tribological properties remaining unchanged. Implantation of nitrogen ions into titanium at 620–820 K results in the formation of a hard solution in the matrix α phase, which provides an increase in the microhardness of the modified layer up to 3500–3700 MPa and an increase in the alloy wear resistance by about 30 times, as well as a decrease in the coefficient of friction by 40%.  相似文献   

10.
基于一步法思路,采用金属3D打印机基于激光选区熔化(SLM)技术制备表面带有凹坑织构的TC4钛合金试样,采用光学相机、超景深显微镜和扫描电镜观察织构成形情况,利用激光共聚焦位移测试仪和显微维氏硬度计分别测试表面粗糙度和表面硬度,在干摩擦条件下采用摩擦磨损试验仪考察不同载荷下织构密度对TC4钛合金试样摩擦学性能的影响,并使用扫描电镜对摩擦实验前后的表面形貌进行分析。研究结果表明:一步法SLM成形能够在TC4钛合金表面获得成形良好的直径500 μm的织构;随着织构密度的提高,钛合金试样表面粗糙度增大,表面硬度有所降低;干摩擦条件下,提高TC4钛合金试样织构密度有利于磨屑的收集从而减少试样的三体磨损,提高载荷有利于改善摩擦副接触状态;5 N载荷下40%织构密度试样的平均摩擦因数和磨痕宽度均最小,与无织构试样相比,平均摩擦因数和磨痕宽度分别降低12%和16%;40%织构密度下,载荷提高会引起摩擦因数的降低和磨损量增大,磨损表面犁沟和片状剥落增多。在干摩擦条件下,3D打印一步法制备的表面织构可以显著改善TC4钛合金的磨粒磨损和黏着磨损。  相似文献   

11.
Detonation gun (D-gun) spraying is one of the most promising spraying techniques for producing wear-resistance coatings. A thick layer (about 0.3 mm thickness) of WC-25Co with high hardness was covered on Ti-Al-Zr titanium alloy by D-gun spraying and the fretting wear behavior of WC-25Co coatings was studied experimentally on a high precision hydraulic fretting wear test rig. An experimental layout was designed to perform fretting wear tests at elevated temperatures from room temperature (25 °C) to 400 °C in ambient air. In the tests, a sphere (Si3N4 ceramic ball) was designed to rub against a plane (Ti-Al-Zr titanium alloy with or without WC-25Co coatings). It was found that the fretting running regimes of WC-25Co coatings were obviously different from those of Ti-Al-Zr titanium alloy. The mixed fretting regime disappeared in WC-25Co coatings, and the boundaries in the running condition fretting map (RCFM) showed hardly any change as temperature increased. The worn scars were examined using a laser confocal scanning microscope (LCSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the coefficients of friction (COF) of WC-25Co coatings at elevated temperatures were nearly constant in the partial slip regime and very low in the steady state. The fretting damage of the coatings was very slight. In the slip regime, the WC-25Co coatings exhibited a good wear resistance, and the wear volume of the coatings obviously decreased with increasing tested temperature. The fretting wear mechanisms of WC-25Co coatings were delamination, abrasive wear and oxidation wear at elevated temperature. The oxide debris layer formed at higher temperature was denser and thicker on top of WC-25Co coatings, thus providing more surface protection against fretting wear, which played an important role in the low fretting wear of the coatings.  相似文献   

12.
Mo离子注入提高TC4合金微动磨损抗力的研究   总被引:1,自引:0,他引:1  
对TC4合金进行了Mo离子注入表面改性处理,利用摩擦磨损试验机进行了点接触微动磨损试验,借助读数显微镜和表面粗糙度仪测量出有关参数,计算出试样的微动磨损体积。结果表明,Mo离子注入使试样表面硬度提高,微动磨损体积明显降低。在微动磨损初期,Mo离子注入具有较好的减摩效果。Mo离子注入带来的表面强化效应是基体合金的微动磨损抗力得以提高的主要原因。  相似文献   

13.
The fretting behavior of superelastic nickel titanium (NiTi) shape memory alloy was studied at various displacement amplitudes on a serve-hydraulic dynamic test machine. The results showed that the superelastic properties of the material played a key role in the observed excellent fretting behavior of NiTi alloy. Due to the low phase transition stress (only 1/4 the value of its plastic yield stress) and the large recoverable phase transition strain (5%) of NiTi, the friction force of NiTi/GCr15 stainless steel pair is smaller than the value of GCr15/GCr15 pair and at the same time the Rabinowicz wear coefficient of NiTi plate is about 1/9 the value of GCr15 plate under the same fretting conditions. For NiTi/GCr15 pair, even NiTi has a much lower hardness than GCr15, the superelastic NiTi alloy exhibits superior fretting wear property than GCr15 steel. It was found that the weak ploughing was the main wear mechanism of NiTi alloy in the partial slip regime. While in the mixed regime and gross slip regime, the wear of NiTi was mainly caused by the abrasive wear of the GCr15 debris in the three-body wear mode.  相似文献   

14.
The composition depth profiles, structure and ball-on-disk frictional characteristics of aluminum alloys 2024 plasma-based ion implanted with nitrogen, titanium and nitrogen then acetylene were investigated. The layers implanted with nitrogen then with nitrogen and titanium and finally with acetylene included three zones: a top DLC (diamond-like carbon) zone, a C, Ti and N coexisting intermediate zone which undergoes chemical changes forming TiC, Ti(C,N), TiN, (Ti, Al)N and AlN second phases, and the bottom zone of the substrate. The micro-hardness and nano-hardness of these layers are HK7.8 GPa and 22 GPa, respectively. The layers showed lower friction coefficient and higher wear resistance. The Raman spectra for worn tracks after sliding for different numbers of cycles showed that when the loading was 1 N after sliding 10,000 cycles, a slight graphitization phenomenon of the DLC film is found. If the loading was 20 N, the graphitization phenomenon of the DLC film is more obvious after sliding 2000 cycles. The SEM morphologies of the wear tracks showed that when the load was 1 N, after sliding 7200 cycles the wear is from rubbing and abrasive wear. When the load was 20 N, after sliding 2000 cycles, delamination wear is dominant.  相似文献   

15.
The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction, under the requirements of the worldwide carbon emission strategy. However, serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication. The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability. In this review, a comparative assessment of grindability is performed using titanium alloy, nickel-based alloy, and high-strength steel. Firstly, this work considers the physicochemical properties as the main factors, and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed. Secondly, the comparative assessment of force, temperature, wheel wear and workpiece surface for titanium alloy, nickel-based alloy, and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance. High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece. Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn. The nano-enhancers with high hardness and spherical characteristics are better choices. Furthermore, a different option is available for high-strength steel grinding, which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging. Finally, the current challenges and potential methods are proposed to promote the application of biolubricant.  相似文献   

16.
Ti6Al7Nb is a high-strength titanium alloy used in replacement hip joints that possesses the excellent biocompatibility necessary for surgical implants. Ti6Al7Nb treated with nitrogen gas (N2) plasma immersion ion implantation–deposition (PIII–D) was investigated. Torsional fretting wear tests of untreated and nitrogen-ion-implanted Ti6Al7Nb alloys against a Zr2O ball (diameter 25.2 mm) were carried out under simulated physiological conditions (serum solution) in a torsional fretting wear test rig. Based on the analyses of the frictional kinetics behavior, the observation of 3D profiles, SEM morphologies and surface composition analyses, the damage characteristics of the surface modification layer and its substrate are discussed in detail. The influence of nitrogen ion density on the implantation and torsional angular displacement amplitudes were investigated. The results indicated that ion implantation layering can improve resistance to torsional fretting wear and thus has wide potential application for the prevention of torsional fretting damage in artificial implants. The damage mechanism prevented by the ion implantation layer on the Ti6Al7Nb alloy is a combination of oxidative wear, delamination and abrasive wear. An increase in ion implantation concentration inhibited detachment by delamination.  相似文献   

17.
液氮冷却下大进给铣削TC4钛合金的试验研究   总被引:1,自引:0,他引:1  
陈冲  赵威  何宁  李亮  杨吟飞 《工具技术》2014,48(8):13-17
钛合金是现代飞行器的主要结构材料之一,是一种典型的难加工材料。针对切削加工钛合金时刀具磨损快、表面质量不易控制等难题,将TC4钛合金作为研究对象,以液氮作为冷却介质,进行了TC4钛合金的大进给铣削试验,测试了液氮冷却条件下大进给铣削TC4钛合金的铣削力、铣削温度以及刀具磨损等,并与乳化液和低温冷风条件下的测试结果进行了对比分析。结果表明:在以较大的切削速度和每齿进给量铣削TC4钛合金时,采用液氮冷却比使用乳化液能更有效地降低切削力和切削温度;比采用低温冷风冷却能更有效地延长刀具寿命。  相似文献   

18.
在重载滑动干摩擦条件下,对比不同织构密度的钛合金表面的摩擦学性能;在耐磨性最好的织构密度钛合金表面再制备碳基薄膜,并与直接在钛合金表面制备的碳基薄膜的摩擦学性能进行对比。结果表明:3种低织构密度条件下,TC4钛合金的摩擦因数减小、磨损率降低;随着织构密度的增大,钛合金材料的摩擦因数变化极小,磨损率有所增加;在织构密度5.95%的钛合金表面制备的碳基薄膜,因织构微凹处产生的小微湍流,减少了摩擦阻力,使得其摩擦因数相比直接在钛合金表面制备的碳基薄膜的摩擦因数有所减小。织构化碳基薄膜的磨损率比钛合金的磨损率降低了99.31%,比直接在钛合金表面制备碳基薄膜的磨损率也降低了约60%,这是因为高接触应力摩擦过程中触发石墨化转变,被磨损的石墨化颗粒碎片嵌入织构微凹中,抑制了摩擦接触界面的磨损行为。  相似文献   

19.
为研究不同基体材料对CrN/CrCN多层涂层在海水环境下摩擦学性能的影响,采用多弧离子镀技术在H65铜合金、TC4钛合金和316L不锈钢基体上沉积CrN和CrN/CrCN多层复合涂层,通过XRD、SEM等技术对涂层的结构进行表征,通过结合力、硬度测试和摩擦磨损试验分析涂层在大气环境和海水环境下的力学性能和摩擦学性能。结果表明:CrN/CrCN多层涂层的内应力相对于CrN明显减小,且硬度相对CrN涂层较高;TC4钛合金为基体的涂层结合力较好且涂层硬度较高;在海水环境下涂层的摩擦因数相对于大气环境都有较大幅度下降,其中,以TC4钛合金和316L不锈钢为基体的涂层摩擦因数较小;以H65铜合金为基体的2种涂层在海水中的磨损率高于大气中,而以TC4合金、316L不锈钢为基体的CrN/CrCN多层涂层在海水环境下的磨损率低于大气环境;TC4钛合金为基体的CrN/CrCN多层涂层在海水环境下具有最低的磨损率,表明TC4钛合金更适合作为海水环境下CrN/CrCN多层涂层耐磨的基体材料。  相似文献   

20.
Titanium, argon, nitrogen, and iron were implanted in separate strips on a ferritic AISI E52100 cylinder. Three implant energies were chosen to obtain a continuous distribution from the surface to a depth of 120 nm and total doses were 4.1017 ions cm?2. The friction coefficient and wear track topography were measured by sliding against a martensitic AISI 52100 steel ball in air, in a fully formulated lubricant and in highly purified hexadecane. In dry sliding, titanium reduced the friction coefficient to 0.32 and suppressed the near-surface cracking, [in agreement with previous work at Harwell and Naval Research Labs]. In hexadecane, titanium reduced the friction coefficient to 0.22, iron and nitrogen increased, it to 0.7 from 0.55, and all implants decreased wear. In the fully formulated lubricant, only the break-in pattern was modified. Auger measurements showed that carbon penetrated the material with all implants, creating TiC in the Ti-implanted strip and probably strengthening the other implanted areas by carbide precipitates and compressive stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号