首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photocatalytic water splitting is a promising process for producing H2 from two abundant renewable sources of water and solar light, with the aid of a suitable photocatalyst. In this work, a combination of sensitizer addition and noble metal loading was employed to modify perovskite photocatalysts in order to achieve the enhancement of photocatalytic H2 production under visible light irradiation. The dependence of the H2 production on type of mesoporous-assembled perovskite titanate nanocrystal photocatalysts (MgTiO3, CaTiO3, and SrTiO3), calcination temperature of photocatalyst, Pt loading, type and concentration of electron donor (diethanolamine, DEA; and triethanolamine, TEA), concentration of sensitizer (Eosin Y, E.Y.), photocatalyst dosage, and initial solution pH, was systematically studied. The experimental results showed that the 0.5 wt.% Pt-loaded mesoporous-assembled SrTiO3 nanocrystal synthesized by a single-step sol-gel method and calcined at 650 °C exhibited the highest photocatalytic H2 production activity from a 15 vol% DEA aqueous solution with dissolved 0.5 mM E.Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic H2 production activity were found to be 6 g/l and 11.6, respectively.  相似文献   

2.
Hydrogen production from the photocatalytic water splitting reaction is very attractive because it is an environmentally friendly process, where hydrogen is produced from two abundantly renewable sources, i.e. water and solar energy, with the aid of photocatalysts. TiO2 is the most widely investigated photocatalyst; however, it alone still exhibits low performance to photocatalytically produce hydrogen. Hence, the aim of this work focused on the enhanced photocatalytic hydrogen production over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts under UV light irradiation. The TiO2-ZrO2 mixed oxides with various TiO2-to-ZrO2 molar ratios were synthesized by a sol-gel process with the aid of a structure-directing surfactant, followed by Ag loading via a photochemical deposition method. The influences of photocatalyst preparation parameters, i.e. calcination temperature, phase composition, and Ag loading, were studied. The results revealed that the mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalyst with a TiO2-to-ZrO2 molar ratio of 93:7 calcined at 500 °C exhibited the highest photocatalytic hydrogen production activity, and the Ag loading of 0.5 wt.% further greatly enhanced the photocatalytic activity of such TiO2-ZrO2 mixed oxide photocatalyst.  相似文献   

3.
This work focused on hydrogen production from the photocatalytic water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled TiO2–SiO2 mixed oxide photocatalysts, of which the mesoporous-assembled TiO2–SiO2 mixed oxides with various TiO2-to-SiO2 molar ratios were synthesized by a sol–gel process with the aid of a structure-directing surfactant. The effects of SiO2 content, calcination temperature, and phase composition of the mixed oxide photocatalysts were investigated. The experimental results showed that the TiO2–SiO2 mixed oxide photocatalyst with the TiO2-to-SiO2 molar ratio of 97:3 and calcined at 500 °C provided the maximum photocatalytic hydrogen production activity. The characterization results supported that the 0.97TiO2–0.03SiO2 mixed oxide photocatalyst (with the suitable SiO2 content of 3 mol%) possessed superior physicochemical properties for the photocatalytic reaction as compared to the pure TiO2, particularly higher specific surface area, lower mean mesopore diameter, higher total pore volume, and lower crystallite size, which led to an enhanced photocatalytic activity.  相似文献   

4.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

5.
Efficient Cu incorporated TiO2 (Cu–TiO2) photocatalysts for hydrogen generation were fabricated by four methods: in situ sol–gel, wet impregnation, chemical reduction of Cu salt, and in situ photo-deposition. All prepared samples are characterized by good dispersion of Cu components, and excellent light absorption ability. Depending on the preparation process, hydrogen generation rates of the as-prepared Cu–TiO2 were recorded in the range of 9–20 mmol h−1 gcatalyst−1, which were even more superior to some noble metal (Pt/Au) loaded TiO2. The various fabrication methods led to different chemical states of Cu, as well as different distribution ratio of Cu between surface and bulk phases of the photocatalyst. Both factors have been proven to influence photocatalytic hydrogen generation. In addition, the Cu content in the photocatalyst played a significant role in hydrogen generation. Among the four photocatalysts, the sample that was synthesized by in situ sol–gel method exhibited the highest stability. High efficiency, low cost, good stability are some of the merits that underline the promising potential of Cu–TiO2 in photocatalytic hydrogen generation.  相似文献   

6.
An efficient visible-light active photocatalyst of multilayer-Eosin Y-sensitized TiO2 is prepared through linkage of Fe3+ between not only TiO2 and Eosin Y but also different Eosin Y molecules to form three-dimensional polymeric dye structure. The multilayer-dye-sensitized photocatalyst is found to have high light harvesting efficiency and photocatalytic activity for hydrogen evolution under visible light irradiation (λ > 420 nm). On the optimum conditions (1:1 initial molar ratio of Eosin Y to Fe(NO3)3, initial 10 × 10−3 M Eosin Y, and 1.0 wt% Pt deposited by in situ photoreduction), its maximal apparent quantum yield for hydrogen evolution is 19.1% from aqueous triethanolamine solution (TEOA aq). The present study highlights linking between dye molecules via metal ions as a general way to develop efficient visible-light photocatalyst.  相似文献   

7.
Mesoporous TiO2/AC, Pt/TiO2 and Pt/TiO2/AC (AC = activated carbon) nanocomposites were synthesized by functionalizing the activated carbon using acid treatment and sol–gel method. Photochemical deposition method was used for Pt loading. The nano-photocatalysts were characterized using XRD, SEM, DRS, BET, FTIR, XPS, CHN and ICP methods. The hydrogen production, under UV light irradiation in an aqueous suspension containing methanol has been studied. The effect of Pt, methanol and activated carbon were investigated. The results show that the activated carbon and Pt together improve the hydrogen production via water splitting. Also methanol acts as a good hole scavenger. Mesoporous Pt/TiO2/AC nanocomposite is the most efficient photocatalyst for hydrogen production compared to TiO2/AC, Pt/TiO2 and the commercial photocatalyst P25 under the same photoreaction conditions. Using Pt/TiO2/AC, the rate of hydrogen production is 7490 μmol (h g catal.)−1 that is about 75 times higher than that of the P25 photocatalyst.  相似文献   

8.
A series of synthesised TiO2-based and commercial photocatalysts were modified by Pt photodeposition and a study made of their photocatalytic activity in hydrogen production. The modified commercial photocatalysts were Evonik P25, Kronos vlp7000 and Hombikat UV-100, and the other modified photocatalysts were synthesised by our group using sol–gel and sol–gel hydrothermal processes (SG400, SG750 and HT). Pt weight percentages used in the study were 0.5, 1.0 and 2.1 wt.% (Pt/TiO2). The photocatalysts were extensively characterised by X-ray diffraction (XRD), UV–vis diffuse reflectance, Brunauer–Emmett–Teller (BET) surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM–EDX), Fourier transform infrared spectroscopy (FTIR) and laser light dispersion. Methanol (25% vol.) was used as sacrificial agent over the 8 h of the hydrogen production tests and measurements were taken of the final concentrations of formaldehyde and formic acid as well as initial and final TOC. Photoactivity of all photocatalysts increased in the presence of Pt. The most efficient of the synthesised photocatalysts was SG750 and of the commercial photocatalysts P25. Maximum production of SG750 was 1846 μmol h−1 at 1.0 wt.% Pt and its production per surface unit was notably higher than that of P25.  相似文献   

9.
Carbon-doped TiO2 nanoparticles were prepared by sol–gel auto-combustion method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Brunauer–Emmett–Teller method (BET), UV–vis diffuses reflectance spectroscopy (DRS). UV–vis diffuse reflectance spectra showed that carbon-doped TiO2 exhibited obvious absorption in the visible light range. The visible light photocatalytic activity of carbon-doped TiO2 was ascribed to the presence of oxygen vacancy state between the valence and the conduction bands because of the formation of Ti3+ species in the as-synthesized carbon-doped TiO2. The sample calcined at 873 K showed the highest photocatalytic activity under solar irradiation. The effects of photocatalyst concentration, initial concentration of methylene blue, and pH value in aqueous solution were also presented.  相似文献   

10.
TiO2-based photocatalyst materials were synthesized through a sol–gel method, followed either by: (1) hydrothermal treatment (150 °C/24 h), or (2) heat treatment (calcination) in a temperature range between 400 and 900 °C. The resulting materials were characterized through BET, XRD, TEM, FTIR, RAMAN, laser diffraction and UV–Vis Diffuse Reflectance Spectroscopy. Photoactivity of the various materials was checked against photocatalytic water-splitting for hydrogen production and a relationship between TiO2 structure and hydrogen production capacity was identified. Optimum results were obtained for anatase-rutile mixtures in a ratio of 87:13. The activity of the home-made photocatalysts was also compared (under the same conditions) with the best commercially available materials which have been widely described in the literature: Hombikat UV100, Millenium PC100, Kronos vlp7000,Degussa P25and Kemira 625.  相似文献   

11.
Cheap and efficient photocatalysts were fabricated by simply mixing TiO2 nanoparticles (NPs) and CuO NPs. The two NPs combined with each other to form TiO2/CuO mixture in an aqueous solution due to the opposite surface charge. The TiO2/CuO mixture exhibited photocatalytic hydrogen production rate of up to 8.23 mmol h−1 g−1 under Xe lamp irradiation when the weight ratio of P25 to CuO was optimized to 10. Although the conduction band edge position of CuO NPs is more positive than normal hydrogen electrode, the TiO2/CuO mixture exhibited good photocatalytic hydrogen production performance because of the inter-particle charge transfer between the two NPs. The detailed mechanism of the photocatalytic hydrogen production is discussed. This mixing method does not require a complicated chemical process and allows mass production of the photocatalysts.  相似文献   

12.
Mesoporous-assembled SrTiO3 photocatalysts with different loaded metal co-catalysts (Au,Pt, Ag, Ni, Ce, and Fe) synthesized by the single-step sol–gel method with the aid of a structure-directing surfactant were tested for the photocatalytic activity of hydrogen production from a methanol aqueous solution under both UV and visible light irradiation. The Au, Pt, Ag, and Ni loadings had a positive effect on the photocatalytic activity enhancement, whereas the Ce and Fe loadings did not. The best loaded metal was found to be Au due to its electrochemical properties compatible with the SrTiO3-based photocatalyst and its visible light harvesting enhancement. A 1 wt.% Au-loaded SrTiO3 photocatalyst exhibited the highest photocatalytic hydrogen production activity with a hydrogen production rate of 337 and 200 μmol h−1 gcat−1 under UV and visible light irradiation, respectively. The hydrogen diffusivity from the liquid phase to the gas phase also significantly affected the photocatalytic hydrogen production efficiency. An increase in the hydrogen diffusability led to an increase in the photocatalytic hydrogen production efficiency.  相似文献   

13.
Photocatalytic hydrogen production from water or organic compounds is a promising way to resolve our energy crisis and environmental problems in the near future. Over the past decades, many photocatalysts have been developed for solar water splitting. However, most of these photocatalysts require cocatalyst to facilitate H2 evolution reaction and noble metals as key cocatalysts are widely used. Consequently, the condition of noble metal cocatalyst including the size and valence state etc plays the key role in such photocatalytic system. Here, the size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst were studied for the first time. Surprisingly, it was found that Pt particle size does not affect the photoreaction rate with the size range of several nanometers in this work, while it is mainly depended on the valence state of Pt particles. Typically, TOFs of TiO2 photodeposited with 0.1–0.2 wt% Pt can exceed 3000 h−1.  相似文献   

14.
Mesoporous-assembled TiO2 nanocrystals with very high photocatalytic H2 production activity were synthesized through a modified sol-gel process with the aid of urea as mesopore-directing agent, heat-treated under various calcination temperatures, and assessed for their photocatalytic H2 production activity via water splitting reaction. The resulting mesoporous-assembled TiO2 nanocrystals were systematically characterized by N2 adsorption-desorption analysis, surface area and pore size distribution analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results showed that the photocatalytic H2 production activity of the synthesized mesoporous-assembled TiO2 nanocrystal calcined at 500 °C, which possessed very narrow pore size distribution, was extraordinarily higher than that of the commercially available P-25 TiO2 and ST-01 TiO2 powders.  相似文献   

15.
Photocatalysts CuS/TiO2 for hydrogen production were synthesized by hydrothermal method at high temperature and characterized by XRD, UV–visible DRS, XPS, EDX, SEM and TEM. When TiO2 was loaded with CuS, it showed photocatalytic activities for water decomposition to hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the one with 1 wt% CuS-loaded TiO2 showed the maximum photocatalytic activity for water splitting, which indicated CuS could improve the separation ratio of photoexcited electrons and holes. What's more, the amounts of the produced hydrogen was about 570 μmol h−1, which had exceeded pure titania (P25) 32 times. In the present paper, it is proven that CuS can act as an effective co-catalyst to enhance the photocatalytic H2 production activity of TiO2.  相似文献   

16.
A series of Au/TiO2 photocatalysts was synthesized via the light assistance through the photo-deposition for H2 production by photocatalytic water splitting using ethanol as the hole scavenger. Effect of solution pH in the range of 3.2–10.0 on the morphology and photocatalytic activity for H2 production of the obtained Au/TiO2 photocatalysts was explored. It was found that all Au/TiO2 photocatalysts prepared in different solution pH exhibited comparable anatase fraction (~0.84–0.85) and crystallite size of TiO2 (21–22 nm), but showed different quantity of deposited Au nanoparticles (NPs) and other properties, particularly the particle size of the Au NPs. Among all prepared Au/TiO2 photocatalysts, the Au/TiO2 (10.0) photocatalyst exhibited the highest photocatalytic activity for H2 production, owning to its high metallic state and small size of Au NPs. Via this photocatalyst, the maximum H2 production of 296 μmol (~360 μmol/g?h) was gained at 240 min using the 30 vol% ethanol as the hole scavenger at the photocatalyst loading of 1.33 g/L under the UV light intensity of 0.24 mW/cm2 with the quantum efficiency of 61.2% at 254 nm. The loss of the photocatalytic activity of around 20% was observed after the 5th use.  相似文献   

17.
L.S. Yoong  F.K. Chong  Binay K. Dutta   《Energy》2009,34(10):1652
The advantage of copper doping onto TiO2 semiconductor photocatalyst for enhanced hydrogen generation under irradiation at the visible range of the electromagnetic spectrum has been investigated. Two methods of preparation for the copper-doped catalyst were selected – complex precipitation and wet impregnation methods – using copper nitrate trihydrate as the starting material. The dopant loading varied from 2 to 15%. Characterization of the photocatalysts was done by thermogravimetric analysis (TGA), temperature programmed reduction (TPR), diffuse reflectance UV-Vis (DR-UV-Vis), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Photocatalytic activity towards hydrogen generation from water was investigated using a multiport photocatalytic reactor under visible light illumination with methanol added as a hole scavenger. Three calcination temperatures were selected – 300, 400 and 500 °C. It was found that 10 wt.% Cu/TiO2 calcined at 300 °C for 30 min yielded the maximum quantity of hydrogen. The reduction of band gap as a result of doping was estimated and the influence of the process parameters on catalytic activity is explained.  相似文献   

18.
Enhanced hydrogen production by photocatalytic decomposition was assessed using liquid phase plasma over metal-loaded photocatalysts. Effects of irradiation of the liquid phase plasma were evaluated in the photocatalytic hydrogen production of hydrogen. Carbon nanofiber was introduced as photocatalytic support for the Ni-loaded TiO2 photocatalyst. The influence of addition of organic reagents into water on hydrogen evolution was also evaluated. The photocatalytic decomposition by irradiation of the liquid phase plasma without photocatalyst produced some hydrogen evolution. The rate of hydrogen evolution was improved by the metal loading on the TiO2 surface. The carbon nanofiber acted as a useful photocatalytic support for the fixation of TiO2. Hydrogen evolution was enhanced by the Ni loading on the TiO2 nanocrystallites supported on the carbon nanofiber support. Hydrogen evolution was increased significantly by the addition of organic reagents, which acted as a type of sacrificial reagent promoting photocatalysis.  相似文献   

19.
Preliminary experiments with a slurry system of enzyme and powdery photocatalyst mixed in one compartment suggested that the electron transfer from light-sensitized photocatalyst to enzyme is the rate-determining step. Hence, in this study an anodized tubular TiO2 electrode (ATTE) on a titanium substrate was examined as a photoanode in an anodic cell for enzymatic hydrogen production in a cathodic cell. Anodization of Ti foil in a two-electrode electrochemical cell followed by annealing in an O2 atmosphere led to the formation of a tube-shaped TiO2 arrays, destroyed tube arrays, or spongelike TiO2 dense film. Samples were proven based on methylene blue (MB) discoloration to be photocatalytically active. The rate of photocatalytic hydrogen production in one of the samples (20 V–25 °C in a mixed electrolyte/350 °C–5 h) was 40 μmol/(h cm2) with a 0.1 M Na2S electrolyte in one compartment reactor system, while the enzymatic hydrogen production rate with light-sensitized photoanode was 30 μmol/(h cm2) in the cathodic compartment with an oxygen production rate of 15 μmol/(h cm2) in the anodic compartment. These results confirmed the successful evolution of stoichiometric H2 and O2 separately. For the system with a sample (20 V–5 °C in 0.5% HF/650 °C–5 h), a hydrogen production rate was ca. 43 μmol/(h cm2) in the cathodic compartment and an oxygen production rate was ca. 20 μmol/(h cm2) in the anodic compartment. X-ray diffraction (XRD) results clearly indicated that the samples showing the highest evolution rate were composed of both anatase and rutile, while those made of either anatase or rutile showed a lower evolution rate. Higher annealing temperatures increased the thickness of the oxide barrier layer and obstructed the charge transfer to the back contact.  相似文献   

20.
S-doped ZnO nanorods were grown on stainless steel mesh as immobilized hierarchical photocatalysts for hydrogen production. Properties of the photocatalysts were investigated by field-emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), photoinduced current, and photocatalytic hydrogen evolution test. Effects of polymer additive and doping on the surface texture, surface property, and H2 production performance of the photocatalysts were studied. Polyethyleneimine helps the growth of nanorods on the entire surface of wire mesh. Photocatalytic H2 production activity of the photocatalysts changes with dopant content and surface texture modification. Due to increased surface area of the hierarchical photocatalyst, enhanced light trapping and liquid flow among wire-mesh, the highest hydrogen evolution rate of 3640 μmol g−1 h−1 is obtained. The photocatalytic activity of photocatalyst remained at 87% of its original performance after five cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号