首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In anisotropic PbSb2Te4 and PbSb2Te4:Cu single crystals, nine main independent components of the Hall, electrical-conductivity, thermopower, and Nernst-Ettingshausen effects and their anisotropy in the range 77–450 K have been studied. PbSb2Te4 single crystals exhibit a high hole concentration (p ≈ 3 × 1020 cm−3). Copper exhibits a donor effect and significantly (approximately by a factor of 2) reduces the hole concentration in PbSb2Te4. The temperature dependences of the kinetic coefficients, except for the Hall effect, have a form typical of the one-band model. The significant anisotropy of the Hall coefficient R 123/R 321 ≈ 2 at low temperatures corresponds to the multi-ellipsoid model of the energy spectrum of holes in PbSb2Te4. An important feature of the data on transport phenomena is the high thermopower anisotropy (ΔS ≈ 60–75 μV/K) in the mixed conductivity region caused by the mixed scattering mechanism. Data on the anisotropy of the transverse Nernst-Ettingshausen effect confirm the mixed mechanism of hole scattering; in the cleavage plane, scattering at acoustic phonons dominates, while in the trigonal axis direction, impurity scattering appears significant. Doping with copper enhances the role of impurity scattering in the direction of the trigonal axis c 3; as a result, two components of the Nernst-Ettingshausen tensor Q 321 and Q 132 in the PbSb2Te4:Cu single crystal are positive at low temperatures, whereas, in the undoped crystal, only the Q 321 component is positive.  相似文献   

2.
The p-type (Bi,Sb)2Te3/(Pb,Sn)Te functional gradient materials (FGMs) were fabricated by hot-pressing mechanically alloyed (Bi0.2Sb0.8)2Te3 and 0.5 at.% Na2Te-doped (Pb0.7Sn0.3)Te powders together at 500°C for 1 h in vacuum. Segment ratios of (Bi,Sb)2Te3 to (Pb,Sn)Te were varied as 3:1, 1.3:1, and 1:1.6. A reaction layer of about 350-μm thickness was formed at the (Bi,Sb)2Te3/(Pb,Sn)Te FGM interface. Under temperature differences larger than 340°C applied across a specimen, superior figures of merit were predicted for the (Bi,Sb)2Te3/(Pb,Sn)Te FGMs to those of (Bi0.2Sb0.8)2Te3 and (Pb0.7Sn0.3)Te. With a temperature difference of 320°C applied across a specimen, the (Bi,Sb)2Te3/(Pb,Sn)Te FGMs with segment ratios of 3:1 and 1.3:1 exhibited the maximum output powers of 72.1 mW and 72.6 mW, respectively, larger than the 63.9 mW of (Bi0.2Sb0.8)2Te3 and the 26 mW of 0.5 at.% Na2Te-doped (Pb0.7Sn0.3)Te.  相似文献   

3.
We report on the successful hydrothermal synthesis of Bi0.5Sb1.5Te3, using water as the solvent. The products of the hydrothermally prepared Bi0.5 Sb1.5Te3 were hexagonal platelets with edges of 200–1500 nm and thicknesses of 30–50 nm. Both the Seebeck coefficient and electrical conductivity of the hydrothermally prepared Bi0.5Sb1.5Te3 were larger than those of the solvothermally prepared counterpart. Hall measurements of Bi0.5Sb1.5Te3 at room temperature indicated that the charge carrier was p-type, with a carrier concentration of 9.47 × 1018 cm−3 and 1.42 × 1019 cm−3 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively. The thermoelectric power factor at 290 K was 10.4 μW/cm K2 and 2.9 μW/cm K2 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively.  相似文献   

4.
Reflectance spectra of single crystals of Bi2Te3-Sb2Te3 solid solutions containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, and 100 mol % of Sb2Te3 have been studied in the range of 400–4000 cm−1 at the temperature T = 291 K and with orientation of the vector of the electric-field strength E perpendicular to the trigonal axis of the crystal C 3 (EC 3). The shape of the spectra is characteristic of plasma reflection; the spectra include the features in the range 1250–3000 cm−1 corresponding to the optical band gap E g opt. The features become more pronounced as the content of Bi2Te3 is increased to 80 mol % in the composition of the Bi2Te3-Sb2Te3 solid solution. A further increase in the content of Sb2Te3 is accompanied by discontinuities in the functional dependences of the parameters characterizing the plasma oscillations of free charge carriers on the solid-solution composition and also by a sharp increase in E g opt.  相似文献   

5.
Polycrystalline p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric (TE) alloys containing a small amount (vol.% ≤5) of SiC nanoparticles were fabricated by mechanical alloying and spark plasma sintering. It was revealed that the effects of SiC addition on TE properties can be different between p-type and n-type Bi2Te3-based alloys. SiC addition slightly increased the power factor of the p-type materials by decreasing both the electrical resistivity (ρ) and Seebeck coefficient (α), but decreased the power factor of n-type materials by increasing both ρ and α. Regardless of the conductivity type, the thermal conductivity was reduced by dispersing SiC nanoparticles in the Bi2Te3-based alloy matrix. As a result, a small amount (0.1 vol.%) of SiC addition increased the maximum dimensionless figure of merit (ZT max) of the p-type Bi0.5Sb1.5Te3 alloys from 0.88 for the SiC-free sample to 0.97 at 323 K, though no improvement in TE performance was obtained in the case of n-type Bi2Te2.7Se0.3 alloys. Importantly, the SiC-dispersed alloys showed better mechanical properties, which can improve material machinability and device reliability.  相似文献   

6.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

7.
On one Sb2Te3 single crystal, the temperature dependences of all three independent components of the Nernst-Ettingshausen tensor (Q ikl ) are measured in the temperature range of 85–450 K, all three components being negative. Alongside with the Nernst-Ettingshausen effect, the anisotropy of the Hall (R ikl ) and Seebeck (S ij ) coefficients and the conductivity (σ ii ) is also investigated. The carried-out analysis of the experimental data on the Nernst-Ettingshausen and Seebeck effects indicates that there is the mixed scattering mechanism with the participation of acoustic phonons and impurity ions, the relative contributions of these mechanisms varying with temperature. In the relaxation-time-tensor approximation, the values of the effective scattering parameter (r) are determined. The obtained values point to the dominant scattering at acoustic phonons in the cleavage plane and to the substantial contribution of charged ions to the scattering along the trigonal axis c 3. It is shown that it is possible to explain the major features of experimental data on the Nernst-Ettingshausen effect within the two-valence-band model with the participation of several groups of holes in the transport phenomena.  相似文献   

8.
Nanotribological characteristics, including the coefficient of friction, wear coefficient, and wear resistance, of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds developed by the annealing of Sn–Cu or Sn–Ni diffusion couples were investigated in this work. The scratch test conditions combined a constant normal load of 10 mN, 20 mN, or 30 mN and a scratch rate of 0.1 μm/s, 1 μm/s, or 10 μm/s. Experimental results indicated that, as the normal load increases, the pile-up grows taller and the scratch deepens, leading to a greater coefficient of friction and wear coefficient, and reduced wear resistance. Moreover, the scratch rate does not have a significant effect on the nanotribological characteristics except for those of Cu6Sn5 and Cu3Sn under a normal load of 10 mN. Though the hardness of Cu6Sn5, Cu3Sn, and Ni3Sn4 is similar, Ni3Sn4 appears to be more prone to wear damage.  相似文献   

9.
Effect of high electric fields on the conductivity of 0.5-1-μm-thick layers of a chalcogenide glassy semiconductor with a composition Ge2Sb2Te5, used in phase memory cells, has been studied. It was found that two dependences are observed in high fields: dependence of the current I on the voltage U, of the type IU n , with the exponent (n ≈ 2) related to space-charge-limited currents, and a dependence of the conductivity σ on the field strength F of the type σ = σ0exp(F/F 0) (where F 0 = 6 × 104 V cm−1), caused by ionization of localized states. A mobility of 10−3–10−2 cm2 V−1 s−1 was determined from the space-charge-limited currents.  相似文献   

10.
A series of samples with nominal compositions of AgSb1−x Sn x Se2 (with x = 0.0, 0.1, 0.2, and 0.3) and AgSbSe2−y Te y (with y = 0.0, 0.25, 0.5, 0.75, and 1.0) were prepared. The crystal structure of both single crystals and polycrystalline samples was analyzed using x-ray and neutron diffractometry. The electrical conductivity, thermal conductivity, and Seebeck coefficient were measured within the temperature range from 300 K to 700 K. In contrast to intrinsic AgSbSe2, samples doped with Sn and Te exhibit apparent semiconducting properties (E g = 0.3 eV to 0.5 eV), lower electrical conductivity, and higher values of the Seebeck coefficient for a small amount of Sn (x = 0.1). Further doping leads to decrease of the thermoelectric power and increase of the electrical conductivity. In order to explain electron transport behavior observed in pure and doped AgSbSe2, electronic structure calculations were performed by the Korringa–Kohn–Rostoker method with coherent potential approximation (KKR–CPA).  相似文献   

11.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

12.
The components of resistivity (ρ ij ), Hall coefficient (R ijk ), and magnetoresistance (ρ ij, kl ) of n-Bi0.88Sb0.12 single crystals doped with tellurium to 0.01, 0.1, and 0.2 at % have been measured in the temperature range of 77–300 K. It is concluded that light and heavy electrons are involved in transport processes. The energy spacing between the bands of light and heavy electrons is found to be 40 meV, and the ratios of the effective masses and electron mobilities are estimated as m 2*/m l * = 3 and b ≈ 0.16, respectively.  相似文献   

13.
The temperature dependences (T = 5−300 K) of the resistivity in the plane of layers and in the direction perpendicular to the layers, as well as the Hall effect and the magnetoresistance (H < 80 kOe, T = 0.5−4.2 K) in Bi2Te3 single crystals doped with chlorine and terbium, are investigated. It is shown that the doping of Bi2Te3 with terbium atoms results in p-type conductivity and in increasing hole concentration. The doping of Bi2Te3 with chlorine atoms modifies also the character of its conductivity instead of changing only the type from p to n. In the temperature dependence of the resistivity in the direction perpendicular to layers, a portion arises with the activation conductivity caused by the hopping between localized states. The charge-transport mechanism in Bi2Te3 single crystals doped with chlorine is proposed.  相似文献   

14.
Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a corrosion product diffuses to the environment including the salt was suggested in Bi0.5Sb1.5Te3. However, the amount of dissolved corrosion product was very low, and the chemical stability of the corrosion product was not changed or improved by element substitution.  相似文献   

15.
The magnetic-field dependences of the Hall coefficient and transverse magnetoresistance are studied experimentally and theoretically in p-Bi2Te3 crystals doped heavily with Sn and grown by the Czochralski method in the case of both classical and quantizing magnetic fields as high as 12 T with the magnetic-field orientation along the C 3 trigonal axis. The Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were measured at temperatures of 4.2 and 11 K. The six-ellipsoid Drabble-Wolfe model of the energy spectrum and the magnetic-field dependence of the Hall coefficient are used as the basis for the method for determining the Hall factor and Hall mobility. New evidence is obtained in support of the existence of the narrow band of impurity Sn states occupied partially with electrons against the background of the light-hole band spectrum. The parameters of impurity states are estimated including their energy (E Sn ≈ 15 meV), the broadening (Γ « kT), and the radius of localization of the impurity state (R ≈ 30 Å).  相似文献   

16.
Field-activated pressure-assisted sintering (FAPAS) was applied to sinter Bi1.2Sb4.8Te9 thermoelectric materials under different conditions, including no-current sintering (NCS), low-density current sintering (LCS), and high-density current sintering (HCS). The effect of the current density on the final thermoelectric performance of the products was investigated. Applying a higher-density electric current and shorter dwell time can improve the thermoelectric performance of the sample by increasing its electric conductivity and decreasing its thermal conductivity. The maximum figure of merit ZT values of the NCS, LCS, and HCS samples were 0.46, 0.48, and 0.57, respectively. Therefore, applying a high-density electric current in the sintering process may be an effective way to obtain Bi1.2Sb4.8Te9 thermoelectric material with high ZT value.  相似文献   

17.
Thermoelectric Sb x Te y films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different concentrations of TeO2. Stoichiometric Sb x Te y films were obtained by applying a voltage of −0.15 V versus saturated calomel electrode (SCE) using a solution consisting of 2.4 mM TeO2, 0.8 mM Sb2O3, 33 mM tartaric acid, and 1 M HNO3. The nearly stoichiometric Sb2Te3 films had a rhombohedral structure, R[`3]m R\bar{3}m , with a preferred orientation along the (015) direction. The films had hole concentration of 5.8 × 1018/cm3 and exhibited mobility of 54.8 cm2/Vs. A more negative potential resulted in higher Sb content in the deposited Sb x Te y films. Furthermore, it was observed that the hole concentration and mobility decreased with increasingly negative deposition potential, and eventually showed insulating properties, possibly due to increased defect formation. The absolute value of the Seebeck coefficient of the as-deposited Sb2Te3 thin film at room temperature was 118 μV/K.  相似文献   

18.
A ternary ordered variant of the skutterudite structure, the Co4Sn6Se6 compound, was prepared. Polycrystalline samples were prepared by a modified ceramic method. The electrical conductivity, the Seebeck coefficient and the thermal conductivity were measured over a temperature range of 300–800 K. The undoped Co4Sn6Se6 compound was of p-type electrical conductivity and had a band gap E g of approximately 0.6 eV. The influence of transition metal (Ni and Ru) doping on the thermoelectric properties was studied. While the thermal conductivity was significantly lowered both for the undoped Co4Sn6Se6 compound and for the doped compounds, as compared with the Co4Sb12 binary skutterudite, the calculated ZT values were improved only slightly.  相似文献   

19.
The kinetic coefficients of high-quality single crystals of ternary layered n-PbBi4Te7 compounds have been measured in the temperature range of 77–400 K. These crystals, doped with electroactive Cd and Ag impurities, were grown by Czochralski pulling with melt supply through a floating crucible. A significant anisotropy of the thermoelectric properties is found. The means of incorporation of electroactive impurities into the ternary compound lattice is established. The experimental values of the Nernst—Ettingshausen coefficient have been analyzed together with the Seebeck, Hall, and conductivity data. The features of transport phenomena in PbBi4Te7 can be explained within the single-band model of nonparabolic energy spectrum and mixed mechanism of electron scattering from acoustic phonons and the Coulomb potential of impurities. It is suggested that acoustic phonon scattering is dominant along the cleavage plane, whereas the impurity scattering dominates along the trigonal axis.  相似文献   

20.
Our group has focused attention on Ga2Te3 as a natural nanostructured thermoelectric material. Ga2Te3 has basically a zincblende structure, but one-third of the Ga sites are structural vacancies due to the valence mismatch between Ga and Te. It has been confirmed that (1) vacancies in Ga2Te3 exist as two-dimensional (2D) vacancy planes, and (2) Ga2Te3 exhibits an unexpectedly low thermal conductivity (κ), most likely due to highly effective phonon scattering by the 2D vacancy planes. However, the effect of the size and periodicity of the 2D vacancy planes on κ has been unclear. In addition, it has also been unclear whether only the 2D vacancy planes reduce κ or if point-type vacancies can also reduce κ. In the present study, we tried to prepare Ga2Te3 and Ga2Se3 with various vacancy distributions by controlling annealing conditions. The atomic structures of the samples were characterized by means of transmission electron microscopy, and κ was evaluated from the thermal diffusivity measured by the laser flash method. The effects of vacancy distributions on κ of Ga2Te3 and Ga2Se3 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号