首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin films of molybdenum-doped indium oxide (IMO) were prepared by a 3-source, cylindrical radio-frequency magnetron sputtering at room temperature. The films were post-annealed and were characterized by their structural (X-ray diffraction) and optical (UV-VIS-NIR spectrophotometer) properties. The films were studied as a function of oxygen volume percentage (O2 vol.%) ranging from 3.5 to 17.5. The structural studies revealed that the as-deposited amorphous films become crystalline on annealing. In most cases, the (222) reflection emerged as high intensive peak. The poor visible transmittance of the films as-deposited without oxygen was increased from ∼ 12% to over 80% on introducing oxygen (3.5 O2 vol.%). For the films annealed in open air, the average visible transmittance in the wavelength ranging 400-800 nm was varied between 77 and 84%. The films annealed at high temperatures (> 300 °C) decreased the transmittance to as low as < 1%. The optical band gap of the as-deposited films increased from the range 3.83-3.90 to 3.85-3.98 eV on annealing at different conditions.  相似文献   

2.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

3.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed.  相似文献   

4.
Anatase titanium dioxide (TiO2) thin films are prepared by DC reactive magnetron sputtering using Ti target as the source material. In this work argon and oxygen are used as sputtering and reactive gas respectively. DC power is used at 100 W per 1 h. The distance between the target and substrate is fixed at 4 cm. The glass substrate temperature value varies from room temperature to 400 °C. The crystalline structure of the films is determined by X-ray diffraction analysis. All the films deposited at temperatures lower than 300 °C were amorphous, whereas films obtained at higher temperature grew in crystalline anatase phase. Phase transition from amorphous to anatase is observed at 400 °C annealing temperature. Transmittances of the TiO2 thin films were measured using UV-visible NIR spectrophotometer. The direct and indirect optical band gap for room temperature and substrate temperature at 400 °C is found to be 3.50, 3.41 eV and 3.50, 3.54 eV respectively. The transmittance of TiO2 thin films is noted higher than 75%. A comparison among all the films obtained at room temperature showed a transmittance value higher for films obtained at substrate temperature of 400 °C. The morphology of the films and the identification of the surface chemical stoichiometry of the deposited film at 400 °C were studied respectively, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness and the grain size are measured using AFM.  相似文献   

5.
In2O3 thin films were prepared by the thermal oxidation of amorphous InSe films in air atmosphere. The structure, morphology and composition of the thermal annealed products were characterized by X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive spectroscopy, respectively. The XRD patterns indicate that the as-deposited InSe films were amorphous and they fully transformed into polycrystalline In2O3 films with a cubic crystal structure in the preferential (222) orientation at a temperature around 600 °C. The optical energy gap of 3.66 eV was determined at room temperature by transmittance and reflectance measurements using UV-vis-NIR spectroscopy. A preliminary characterization shows that these films have a promising response towards NO2 gas at a working temperature around 180 °C.  相似文献   

6.
Nb2O5 films have been deposited on variety of substrates using the sol-gel dip coating technique. As-deposited films on all substrates are amorphous. Films were annealed under controlled ambience at 300, 400 and 600°C for 5 h. As-deposited films on glass substrate show uniform surface structure. The crystal structure and surface topography are found to depend strongly on the annealing temperature and nature of the substrates. The average grain size of 40 nm is observed in films annealed at 300°C. On annealing at 400°C increasing grain size and resulting fusing of them, enhanced surface roughness. Films deposited on NaCl substrates crystallized into a stable monoclinic phase and those deposited on single crystal Si substrates crystallized into hexagonal phase after annealing at 600°C. The as-deposited films show very high transmittance (>90%) in the visible region. The optical band gap is observed to increase from 4.35 eV when the films are in amorphous state to 4.87 eV on crystallization.  相似文献   

7.
Titanium oxide (TiOx) thin films were deposited on the Si(100) substrates by direct-current reactive magnetron sputtering at 3-15 % oxygen flow ratios (FO2% = FO2/(FO2 + FAr) × 100%), and then annealed by rapid thermal annealing (RTA) at 350-750 °C for 2 min in air. The phase, bonding and luminescence behaviors of the as-deposited and annealed TiOx thin films were analyzed by X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-deposited TiOx films were amorphous from XRD and showed weak Raman intensity. In contrast, the distinct crystalline peaks of anatase and rutile phases were detected after RTA at 550-750 °C from both XRD and Raman spectra. A mixture of anatase and rutile phases was obtained by RTA at 3 FO2% and its amount increased with annealing temperature. Only the anatase phase was detected in the 6-15 FO2% specimens after RTA. The PL spectra of all post-annealed TiOx films showed a broad peak in visible light region. The PL peak of TiOx film at 3 FO2% at 750 °C annealing can be fitted into two Gaussian peaks at ~ 486 nm (2.55 eV) and ~ 588 nm (2.11 eV) which were attributed to deep-level emissions of oxygen vacancies in the rutile and anatase phases, respectively. The peak around 550 nm was observed at 6-15 FO2% which is attributed to electron-hole pair recombination from oxygen vacancy state in anatase phase to valence band. The variation of intensity of PL peaks is concerned with the formation of the rutile and anatase phases at different FO2% and annealing temperatures.  相似文献   

8.
Thin films of (Ba0.5,Sr0.5)TiO3 (BST5) in the thickness range 400-800 nm have been deposited by RF magnetron sputtering on to quartz substrates at ambient temperature. All the properties investigated, i.e. structure, microstructure, optical and microwave dielectric, show a critical dependence on the processing and post processing parameters. The surface morphology as studied by atomic force microscopy reveals ultra fine grains in the case of as deposited films and coarse grain morphology on annealing. The as-deposited films are X-ray amorphous and exhibit refractive index in the range 1.9-2.04 with an optical absorption edge value between 3.8 and 4.2 eV and a maximum dielectric constant of 35 at 12 GHz. The dispersion in refractive index fits into the single effective oscillator model while the variation in the optical parameters with oxygen percentage in the sputtering gas can be explained on the basis of packing fraction changes. On annealing the films at 900 °C they crystallize in to the perovskite structure accompanied by a decrease in optical band gap, increase in refractive index and increase in the microwave dielectric constant. At 12 GHz the highest dielectric constant achieved in the annealed films is 175. It is demonstrated that with increasing oxygen-mixing percentage in the sputtering gas, the microwave dielectric loss decreases while the dielectric constant increases.  相似文献   

9.
Cu doped zinc titanate (ZnTiO3) films were prepared using radio frequency magnetron sputtering. Subsequent annealing of the as-deposited films was performed at temperatures ranging from 600 to 900 °C. It was found that the as-deposited films were amorphous and contained 0.84 at.% Cu. This was further confirmed by the onset of crystallization that took place at annealing temperatures 600 °C. The phase transformation for the as-deposited films and annealed films was investigated in this study. The results showed that Zn2Ti3O8, ZnTiO3, and TiO2 can coexist at 600 °C. When annealed at 700 °C, the results revealed that mainly the hexagonal ZnTiO3 phase formed, accompanied by minority amounts of TiO2 and Zn2Ti3O8. Unlike pure zinc titanate films, this result showed that the Zn2Ti3O8 phase can be stable at temperatures above 700 °C. Moreover, Cu addition in zinc titanate thin film could result in the decomposition of hexagonal (Zn,Cu) TiO3 phase at 800 °C. When the Cu content was increased in zinc titanate thin films from 0.84 at.% to 2.12 at.%, there were only two phases; Zn2Ti3O8 and ZnTiO3, coexisting at temperatures between 700 and 800 °C. This result indicated that a greater presence of Cu dopants in zinc titanate thin films leads to the existence of the Zn2Ti3O8 phase at higher temperatures.  相似文献   

10.
TiO2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O2 plasma. The TiO2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 °C to 800 °C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 °C. The film annealed at 400 °C showed higher hardness than the film annealed at 600 °C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 °C to 800 °C, as revealed by a decrease in water CA from 87° to 50°. Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.  相似文献   

11.
Lead titanate thin films were deposited by atomic layer deposition on Si(100) using Ph4Pb and Ti(O-i-Pr)4 as metal precursors and O3 and H2O as oxygen sources. The influence of the Ti : Pb precursor pulsing ratio on the film growth, stoichiometry and quality was studied at two different temperatures, i.e. 250 and 300 °C. Uniform and stoichiometric films were obtained using a Ti : Pb precursor pulsing ratio of 1 : 10 at 250 °C or 1 : 28 at 300 °C. The as-deposited films were amorphous but the crystalline PbTiO3 phase was obtained by rapid thermal annealing at 600-900 °C both in N2 and O2 ambient. Thin PbTiO3 films were visually uniform and roughness values for as-deposited and annealed films were observed by atomic force microscopy.  相似文献   

12.
The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O2 plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.  相似文献   

13.
This paper presents structural, magnetization and transport properties measurements carried out on as-deposited Co (400 Å) thin film as well as samples annealed in the temperature range 100-500 °C in steps of 100 °C for 1 h. The samples used in this work were deposited on float glass substrates using ion beam sputtering technique. The magnetization measurements carried out using MOKE technique, clearly indicates that as-deposited as well as annealed samples up to 500 °C show well saturation magnetization with applied magnetic field. The as-deposited sample shows coercivity value (Hc) of 26 Oe, and it is increased to 94 Oe for 500 °C-annealed sample. A minimum coercivity value of 15 Oe is obtained for 200 °C annealed sample. The XRD measurements of as deposited films show microcrystalline nature of Co film, which becomes crystalline with increase in annealing temperature. The corresponding resistivity measurements show gradual decrease in resistivity. AFM technique was employed to study the surface morphology of as deposited film as well as annealed thin films. Observed magnetization, and resistivity behaviour is mainly attributed to the (i) change in crystal structure (ii) increase in grain size and (iii) stress relaxation due to the annealing treatment.  相似文献   

14.
Ag2Cu2O3 thin films were deposited on glass substrates by RF magnetron sputtering of an equiatomic silver-copper target (Ag0.5Cu0.5) in reactive Ar-O2 mixtures. The reactive sputtering was done at varying power, oxygen flow rate and deposition temperature to study the influence of these parameters on the deposition of Ag2Cu2O3 films. The film structure was determined by X-ray diffraction, while the optical properties were examined by spectrophotometry (UV-vis-NIR) and photoluminescence. Furthermore, the film thickness and resistivity were measured by tactile profilometry and 4-point probe, respectively. Additional mobility, resistivity and charge carrier density Hall effect measurements were done on a few selected samples. The best films in terms of stoichiometry and crystallography were achieved with a sputtering power of 100 W, oxygen and argon flow rates of 20 sccm (giving a deposition pressure of 1.21 Pa) and a deposition temperature of 250 °C. The optical transmittance and photoluminescence spectra of films deposited with these parameters indicate several band gaps, most prominently, a direct one of around 2.2 eV. Electrical characterization reveals charge carrier concentrations and mobilities in the range of 1021-1022 cm− 3 and 0.01-0.1 cm2/Vs, respectively.  相似文献   

15.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

16.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

17.
D.Y. Ku  I. Lee  T.S. Lee  B. Cheong  W.M. Kim 《Thin solid films》2006,515(4):1364-1369
In this study, indium-zinc oxide (IZO) thin films have been prepared at a room temperature, 200 and 300 °C by radio frequency magnetron sputtering from a In2O3-12 wt.% ZnO sintered ceramic target, and their dependence of electrical and structural properties on the oxygen content in sputter gas, the substrate temperature and the post-heat treatment was investigated. X-ray diffraction measurements showed that amorphous IZO films were formed at room temperature (RT) regardless of oxygen content in sputter gas, and micro-crystalline and In2O3-oriented crystalline films were obtained at 200 and 300 °C, respectively. From the analysis on the electrical and the structural properties of annealed IZO films under Ar atmosphere at 200, 300, 400 and 500 °C, it was shown that oxygen content in sputter gas is a critical parameter that determines the local structure of amorphous IZO film, stability of amorphous phase as well as its eventual crystalline structure, which again decide the electrical properties of the IZO films. As-prepared amorphous IZO film deposited at RT gave specific resistivity as low as 4.48 × 10− 4 Ω cm, and the highest mobility value amounting to 47 cm2/V s was obtained from amorphous IZO film which was deposited in 0.5% oxygen content in sputter gas and subsequently annealed at 400 °C in Ar atmosphere.  相似文献   

18.
Nitrogen-doped ZnO films were deposited by RF magnetron sputtering in 75% of N2 / (Ar + N2) gas atmosphere. The influence of substrate temperature ranging from room temperature (RT) to 300 °C was analyzed by X-ray diffractometry (XRD), spectrophotometry, X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS) and Hall measurements setup. The XRD studies confirmed the hexagonal ZnO structure and showed that the crystallinity of these films increased with increasing substrate temperature (Ts). The optical studies indicate the average visible transmittance in the wavelength ranging 500-800 nm increases with increasing Ts. A minimum transmittance (9.84%) obtained for the films deposited at RT increased with increasing Ts to a maximum of 88.59% at 300 °C (500-800 nm). Furthermore, it was understood that the band gap widens with increasing Ts from 1.99 eV (RT) to 3.30 eV (250 °C). Compositional analyses (XPS and SIMS) confirmed the nitrogen (N) incorporation into the ZnO films and its decreasing concentration with increasing Ts. The negative sign of Hall coefficients confirmed the n-type conducting.  相似文献   

19.
Multilayer Cr(1 − x)AlxN films with a total thickness of 2 μm were deposited on high-speed steel by medium frequency magnetron sputtering from Cr and Al-Cr (70 at.% Al) targets. The samples were annealed in air at 400 °C, 600 °C, 800 °C and 1000 °C for 1 hour. Films were characterized by cross-sectional scanning electron microscopy and X-ray diffraction analysis. The grain size of the as-deposited multilayer films is about 10 nm, increasing with the annealing temperature up to 100 nm. Interfacial reactions have clearly changed at elevated annealing temperatures. As-deposited films' hardness measured by nanoindentation is 22.6 GPa, which increases to 26.7 GPa when the annealing temperature goes up to 400 and 600 °C, but hardness decreases to 21.2 GPa with further annealing temperature increase from 600 to 1000 °C. The multilayer film adhesion was measured by means of the scratch test combined with acoustic emission for detecting the fracture load. The critical normal load decreased from 49.7 N for the as-deposited films to 21.2 N for the films annealed at 1000 °C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号