共查询到19条相似文献,搜索用时 92 毫秒
1.
2.
3.
4.
6.
环氧树脂在溶剂蒸发过程中容易产生微孔,影响其防腐蚀性能。为了提高其对腐蚀介质的阻碍能力,本文采用密闭氧化法制备氧化石墨烯,再利用湿式转移法将氧化石墨烯水溶液分散在环氧树脂中,制备氧化石墨烯/环氧树脂防腐涂料。通过红外光谱(FTIR)、X射线衍射(XRD)和拉曼光谱(Raman)分析氧化石墨烯的结构变化,利用开路电位测试(OCP)、水接触角、腐蚀形貌和气体透过率分析氧化石墨烯/环氧树脂涂料的防腐性能。结果表明,氧化石墨烯/环氧树脂(GO/EP)涂料的开路电位和水接触角分别为0.181V和86.12°,与纯环氧树脂涂料相比,分别提高了0.066V和10.5°;当GO/EP浸泡在3.5%NaCl溶液中腐蚀20天后,表面仅产生了粗糙化,涂层稳定性好,屏障性能强;与EP涂层相比,GO/EP涂层的O2和H2O渗透率分别降低了51.2%和65.5%。 相似文献
7.
采用简单的一步水热法制备了硅烷偶联剂功能化氧化石墨烯(KGO),并将其与环氧树脂复合,制备了一种高性能的防腐涂料。采用傅里叶变换红外光谱、拉曼光谱、扫描电子显微镜和X射线衍射分析对KGO的各项性能及微观形貌进行了表征。随后通过电化学阻抗谱(EIS)和盐雾试验对添加了质量分数为0.1%、0.2%和0.3%的环氧树脂复合涂料的耐腐蚀性能进行表征。结果表明,KGO显著提高了环氧树脂复合涂层的屏蔽性能和耐腐蚀性能。环氧树脂复合涂层腐蚀电流密度由8.8×10-8 A·cm-2最低下降到2.0×10-8 A·cm-2。其中,0.2 KGO/EP涂层的低频阻抗模量在浓度为3.5%的NaCl溶液中浸泡72 h后仍维持在较高水平,约高出纯环氧树脂涂层2个数量级。当KGO的添加量为0.2%时,环氧树脂复合涂层具有最优异的耐腐蚀性能。 相似文献
8.
利用二乙烯三胺在氧化石墨烯(GO)表面引入氨基基团得到改性GO,然后与环氧树脂(EP)复合,制备出GO增强EP复合材料。性能测试结果表明,该复合材料具有良好的疏水性及力学性能。复合材料的吸水率随着改性GO含量增加先降低后提高,当改性GO含量为0.2%时,吸水率最低,浸泡12 d后吸水率为0.125%,与纯EP相比降低了81.48%,当改性GO含量继续增加,由于复合材料界面局部空隙的增加,吸水率反而大幅上升。复合材料的拉伸强度、冲击强度随着改性GO含量增加先提高后降低,当改性GO含量为0.05%时,拉伸强度、冲击强度最高,分别为50.94 MPa,5.78 k J/m2,相比纯EP增加了104%和90%。综合考虑,当改性GO含量为0.05%时,复合材料的分散性能、疏水性及力学性能较优。 相似文献
9.
10.
11.
12.
13.
以叔碳酸缩水甘油酯(E-10P)为疏水单体,通过环氧与羧酸的共价键合,在氧化石墨烯(GO)表面引入疏水性支化碳链,改性后的氧化石墨烯(F-GO)作为防锈填料加入环氧树脂中得到F-GO/环氧复合涂料。通过红外光谱、拉曼光谱、X-射线衍射、热重分析对F-GO的结构进行表征,通过场发射扫描电镜观察F-GO及复合涂料的微观形貌,并通过电化学阻抗、极化曲线和盐雾试验测试了复合涂料的防腐性能。结果表明:E-10P可利用其空间效应阻碍片层的团聚;疏水效应可提高F-GO的热稳定性和与环氧树脂的相容性;与空白环氧涂层相比,当复合涂料中F-GO质量分数为0.2%时,厚度为20~25 μm的防腐涂层的腐蚀电流可由2.358 6×10 -6 A/cm 2下降至2.000 2×10 -11 A/cm 2,阻抗值可由1.1×10 7 Ω·cm 2 提升至6.9×10 9 Ω·cm 2。 相似文献
14.
以腰果酚改性酚醛胺为固化剂,将石墨烯掺杂到环氧树脂(E42)中制备了防腐涂料,并将其涂覆在预处理的基材马口铁上.对复合涂层的表面形貌、固化时间、光泽度、附着力、抗冲击性、硬度、柔韧性和防腐性能进行了测试.结果表明,腰果酚改性酚醛胺固化剂制备的涂层具有优异的力学性能和防腐性能,且随着石墨烯含量(以E42质量为基准,下同)的增加,涂层防腐性能提高.当腰果酚改性酚醛胺含量为25%,石墨烯含量为6%时,制备的涂层的平均厚度为(120±10)μm,硬度可达到2H,附着力达到0级,自腐蚀电流密度为8.482×10–6 A/cm2,腐蚀速率为6.593×10–2 mm/a. 相似文献
15.
以自制聚氨酯预聚体与环氧树脂复合形成互穿聚合物网络结构,采用共混方法添加自制高导电性石墨烯,制备了电热双敏型形状记忆复合材料,研究了其性能. 结果表明,以20%(w)聚氨酯/环氧树脂为基体所制1.0%(w)石墨烯/聚氨酯/环氧树脂复合材料的分散性良好,玻璃化转变温度稍低于纯环氧树脂,拉伸强度是纯环氧树脂的93%,导电性达3.58′10-4 S/m,固定率为95.5%,回复率为97.5%,循环5次后固定率不低于95%. 相似文献
16.
采用种子微悬浮聚合法制备了聚苯乙烯/氧化石墨烯复合囊壁包覆硬脂酸丁酯微胶囊润滑材料(MGO–Micro LMs),以MGO–Micro LMs为润滑填料,环氧树脂(EP)为基体材料,采用浇注成型工艺制备了EP/MGO–Micro LMs复合材料。采用滑动摩擦磨损试验仪评价了MGO–Micro LMs对EP基体材料摩擦学性能的影响;采用扫描电子显微镜对磨损面的微观形貌进行表征,并探究了其磨损机理。结果表明,MGO–Micro LMs能够显著地降低EP的摩擦系数和磨损量,当MGO–Micro LMs质量分数为20%时,EP/MGO–Micro LMs复合材料的摩擦系数为0.138 44,磨损量减少了约42.3%,磨损机理主要为磨粒磨损。 相似文献
17.
Ayesha Kausar Irum Rafique Zanib Anwar Bakhtiar Muhammad 《Polymer-Plastics Technology and Engineering》2016,55(7):704-722
In this article, advancement in epoxy/graphene oxide composites is presented. These materials are comprised of graphene oxide (GO) as filler (carbon-based material, thermodynamically stable, two-dimensional, planar and layered structure). Due to improved properties (mechanical response, low density, electrical resistance, and thermal stability), epoxy resins are used in several applications. Graphene oxide proposes unique properties to epoxy composites as high surface area, thermal and electrical conductivity as well as mechanical and barrier properties, relative to neat matrix. The corresponding significance of epoxy/GO-based materials, related challenges, and potential exploitation regarding technical applications (aerospace, gas sensor, electronic devices, etc.) have been overviewed. 相似文献
18.
19.
Bin Zhao Peng‐Wei Liu Dong‐Yue Liu Thomas J. Kolibaba Cong‐Yun Zhang Yan‐Ting Liu Ya‐Qing Liu 《大分子材料与工程》2019,304(8)
A novel functionalized graphene oxide (f‐GO) decorated with phosphorus/nitrogen (P/N)‐containing molecules is fabricated using a facile water‐based procedure. The chemical structure and micro‐morphology are well characterized by a combination of experimental and theoretical methods. Reactive force field‐based molecular dynamics simulations reveal at the atomic level that the GO sheets are successfully functionalized with P‐N flame‐retardant molecules by means of hydrogen bonds. Subsequently, f‐GO with extremely low loading is introduced into epoxy resin (EP) for reducing its flammability. Thermogravimetric analysis suggests that f‐GO significantly reduces the maximum mass loss rate of EP and enhances the char‐yield during heating. Combined with the results of a microscale combustion calorimeter and limiting oxygen index, EP/f‐GO2 shows better flame retardancy than the other nanocomposites. Furthermore, the presence of 2 wt% f‐GO substantially reduces the fire hazard of EP, resulting in 29.3% decline in the peak heat release rate, as well as 73% and 65% reduction in total smoke production and rate of smoke release, respectively, according to cone calorimetric tests. Based on the analyses of the char layers, f‐GO is determined to promote the formation of a more protective phosphorus‐containing char barrier for EP during combustion, indicating an effective condensed phase flame‐retardant mechanism. 相似文献