首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
膨胀型阻燃剂和有机蒙脱土协同阻燃聚丙烯的研究   总被引:3,自引:0,他引:3  
李莹  王向东 《中国塑料》2010,24(7):87-91
采用熔融插层法制备了聚丙烯/膨胀型阻燃剂/有机蒙脱土(PP/IFR/OMMT)阻燃复合材料。探讨了OMMT对PP膨胀阻燃体系的影响,通过X射线衍射(XRD)、极限氧指数、热重分析(TG)、力学性能测试对阻燃复合材料的阻燃性、热稳定性及力学性能进行了研究。结果表明,PP高分子链插层进入OMMT层间,形成了插层型复合材料。OMMT与IFR具有明显的协同阻燃性。OMMT添加量为2份时,复合材料的极限氧指数达到31 %,较单独添加IFR时高出30 %;与纯PP相比,复合材料残炭率明显提高。随着OMMT含量的增加,复合材料的拉伸强度、弯曲强度和冲击强度均呈现先上升后下降的趋势,当OMMT含量为3份、IFR含量为22份时,复合材料的拉伸强度、弯曲强度和冲击强度达到最大值。  相似文献   

2.
有机硅改性环糊精在膨胀阻燃聚丙烯中协同作用的研究   总被引:1,自引:0,他引:1  
王环峰  李斌 《中国塑料》2008,22(12):33-37
以1,1,3,3-四甲基二硅氧烷、烯丙基缩水甘油醚、β-环糊精(β-CD)为原料合成了一种新型有机硅改性环糊精(CDS)。红外光谱测试表明,环糊精接枝到硅氢加成反应制得的聚合物链端。利用热重分析、氧指数测试、垂直燃烧、扫描电镜分析等手段对比探讨聚丙烯(PP) /膨胀阻燃剂(IFR) /β-CD和PP/IFR/CDS复合材料热失重行为、阻燃性能、微观结构及力学性能。结果表明,IFR/CDS具有良好的协同阻燃作用,同时提高了材料的力学性能。当CDS含量为1.5 %(质量分数,下同)时,PP/IFR/CDS复合材料的极限氧指数为35.0 %, 垂直燃烧通过UL94 V-0测试,拉伸强度、弯曲强度和冲击强度分别比PP/IFR/β-CD复合材料提高了8.6 %、16.8 %和70.7 %。  相似文献   

3.
随着膨胀型阻燃剂(IFR)用量的增加,聚丙烯(PP)复合材料的冲击强度会不断降低。为提高PP/IFR复合材料的抗冲击韧性,使用了少量有机蒙脱土(OMMT)和聚烯烃弹性体(POE)协同增韧。结果表明,所制备的PP/IFR/POE/OMMT复合材料的极限氧指数最高为29.3%,达到UL94 V-0等级。当OMMT的质量分数为0.5%,POE质量分数为15%时,复合材料的冲击强度达到21.8 kJ/m~2,几乎是PP/IFR复合材料的6倍。此外,PP/IFR/POE/OMMT复合材料的熔体质量流动速率大于9.5 g/10min,具有良好的流动性。这种PP阻燃复合材料在汽车、家电、工业与民用建筑等领域具有广阔的应用前景。  相似文献   

4.
研究了纳米二氧化硅(nano-SiO2)对含聚烯烃弹性体(POE)的共聚PP增强增韧阻燃复合材料的力学性能和阻燃性能的影响规律。结果表明,少量nano-SiO2即可提高聚丙烯/膨胀型阻燃剂/聚烯烃弹性体(PP/IFR/POE)复合材料的缺口冲击强度,并提高复合材料的拉伸强度与断裂伸长率。但是,当nano-SiO2含量超过2%后,复合材料的冲击强度有下降趋势。PP/IFR/POE/nano-SiO2复合材料的极限氧指数(LOI)值在nano-SiO2含量为2%时达到最大值。相比于未加入nano-SiO2的复合材料,添加了nano-SiO2的复合材料的热稳定性有明显提升。此外,PP/IFR/POE/nano-SiO2复合材料还具有较好的流动性。  相似文献   

5.
采用间苯二酚双(二苯基)磷酸酯(RDP)、双酚A双(二苯基)磷酸酯(BDP)、磷酸三甲苯酯(TCP)和异丙苯基磷酸酯(IPP)作为阻燃协效剂与膨胀型阻燃剂(IFR)复配阻燃聚丙烯(PP)。研究了芳基磷酸酯的种类对PP/IFR复合材料阻燃性能、热稳定性能和力学性能的影响,并通过热重分析(TGA)、扫描电镜(SEM)等对材料进行了表征。结果表明:芳基磷酸酯对PP/IFR复合材料具有一定的协同阻燃作用。当芳基磷酸酯用量为5.0%时,PP/IFR/TCP、PP/IFR/IPP、PP/IFR/RDP和PP/IFR/BDP复合材料的氧指数(OI)由PP/IFR的28.5%分别提高到29.5%、30.0%、30.5%和29.5%,垂直燃烧级别由UL 94V-1级提升至UL 94V-0级;同时,RDP和BDP可提高PP/IFR复合材料的热稳定性能,500℃时的残余率分别高达15.4%和12.9%。此外,RDP和BDP的加入有利于IFR粒子的分散,从而改善了材料的力学性能。  相似文献   

6.
龚绍峰  滕霞  唐武飞 《中国塑料》2022,36(12):65-70
通过水热合成法制备了系列不同结构类型的磷铝分子筛(AlPO⁃n,n=5, 11, 17, 34),并通过熔融挤出共混,将系列AlPO⁃n分子筛应用到膨胀阻燃聚丙烯(PP/IFR)复合材料中,致力改善其阻燃和热稳定性能。利用极限氧指数仪、水平垂直燃烧仪、锥形量热仪和万能试验机分别测试材料的阻燃性能和力学性能。结果表明,AlPO⁃n分子筛可改善PP/IFR复合材料的相关性能,其中AlPO⁃17(1 %,质量分数,下同)相对其他类型磷铝分子筛能明显改善PP/IFR复合材料的阻燃和热稳定性能,复合材料的极限氧指数和600 ℃的残炭率相对于PP分别提高至34.8 %和14.3 %。  相似文献   

7.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

8.
将纳米氧化锌(nano-ZnO)作为协效改性剂与膨胀阻燃剂(IFR)复配,制成IFR/nano-ZnO复合阻燃剂,并将其用于三元乙丙橡胶/聚丙烯(EPDM/PP)复合材料的阻燃。研究了nano-ZnO用量对该EPDM/PP/IFR/nano-ZnO阻燃复合材料的阻燃性能和力学性能的影响。结果表明:EPDM/PP/IFR/nano-ZnO阻燃复合材料具有优良的阻燃性能,且材料的力学性能明显改善;另外,当nano-ZnO用量为2%时,该阻燃复合材料的综合性能最佳。  相似文献   

9.
吴笑  许博  辛菲  王向东  马雯  倪沛 《中国塑料》2018,32(5):73-78
将有机-金属杂化三嗪化合物(SCTCFA-ZnO)与聚磷酸铵(APP)复配制备了膨胀型阻燃剂(IFR),通过极限氧指数测试、垂直燃烧测试、锥形量热分析、热失重分析和扫描电子显微镜分析等表征方法研究了SCTCFA-ZnO/APP的协同作用对PP复合材料阻燃性能的影响。结果表明,APP与SCTCFA-ZnO复配可以有提高PP材料的阻燃性能,当IFR的添加量为25 %(质量分数,下同),且APP/SCTCFA-ZnO的质量比为2/1时,复合材料的极限氧指数最高,达到31.1 %,达到UL 94 V-0级;IFR可提高复合体系的温热稳定性,阻燃复合材料燃烧后会形成一层致密、连续的炭层,从而起到良好的阻燃效果。  相似文献   

10.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

11.
马志领  韩贵胜  丁海涛  张杰 《精细化工》2000,17(12):726-728
以三氯氧磷、异辛醇为原料合成的酸式磷酸二辛酯是一种含磷阻燃偶联剂 ,作者研究了其对膨胀型阻燃剂 (IFR) /聚丙烯 (PP)共混材料的偶联作用。力学性能、阻燃性能测试和SEM结果表明 :酸式磷酸二辛酯是体系有效的偶联剂 ,在不损害原有阻燃性能的条件下 ,提高了共混材料的力学性能 ,明显改善共混体系的形貌结构 ,是一种可选的阻燃偶联剂。经酸式磷酸二辛酯偶联的IFR/PP拉伸强度、抗冲击强度和水平燃烧性能分别为 2 5 4MPa、4 0 2kJ·m-2 和GB 2 40 8—80II- 0 5mm ,离火 36s自熄 ,未加偶联剂的对应值为 2 2 5 7MPa、3 2 7kJ·m-2 和GB 2 40 8— 80II- 1mm ,离火 39s自熄。  相似文献   

12.
采用含磷钛酸酯偶联(剂PTCA)对由三聚氰胺焦磷酸(盐MPP)和季戊四(醇PER)复配组成的膨胀型阻燃(剂IFR)进行表面改性,并用其制备阻燃聚丙烯(PP)。研究了PTCA用量对PP/IFR共混物力学性能和阻燃性能的影响,并通过热重分析和扫描电镜对共混物进行了表征。结果表明:PTCA有效改善了IFR与PP基体的相容性,提高了PP/IFR共混物的力学性能及阻燃性能。当PTCA用量为1.0%时,共混物的拉伸强度和缺口冲击强度为27.3 MPa和3.2 kJ/m2,分别比未改性的PP/IFR提高了18.7%和6.7%;LOI从未改性PP/IFR的28.5%提高到31.5%,且通过UL94 V-0级;此外,共混物的热稳定性也明显提高,700℃时的残炭率由未改性PP/IFR的8.2%提高到12.1%。  相似文献   

13.
Intumescent flame retardants (IFR) are widely used in the field of flame retardant polypropylene (PP), but their flame retardant efficiency and smoke suppression properties need to be further improved. Herein, a Ni-Al LDH (layered double hydroxide) is obtained successfully by coprecipitation and microwave hydrothermal technique and used as a synergist to improve the flame-retardant and smoke-suppression properties of triazine-based IFR. The results showed that IFR/Ni-Al LDH exhibited the best synergistic effect when the IFR is replaced by 5 wt% Ni-Al LDH. 17 wt% IFR/Ni-Al LDH enabled the PP composites to achieve UL-94 V-0 rating with a high LOI of 29.8%. Besides, the introduction of Ni-Al LDH effectively decreased the heat and smoke release of the PP/IFR composites due to its catalytic charring effect. This is mainly attributed that the introduction of metal ions in Ni-Al LDH effectively improved the strength and crosslinking degree of char layer and promoted the formation of a cohesive and dense char layer. The formed high-quality char layer effectively exerted the barrier effect in condensed phase. Therefore, the PP/IFR/Ni-Al LDH composites exhibited excellent flame-retardant and smoke-suppression performance. This investigation provided a facile way to prepare environment-friendly and high-performance flame retardant PP composites with wide application prospects.  相似文献   

14.
The phosphoric acid‐pentaerythritol‐melamine copolymer, which is composed of three main components of intumescent flame retardant (IFR) and has optimal intumescent degree, was selected as IFR. The influence of meleated polypropylene (PP‐g‐MAH) on the properties and compatibility of IFR polypropylene (PP) composites were studied. The results obtained from mechanical tests, rheological behavior of composites, and scanning electron microscope showed that PP‐g‐MAH was a true coupling agent for IFR/PP blends and did not change the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of PP‐g‐MAH was also proven by WAXD analysis. Flow test showed that the flow behaviors of composites in the melt are those of a pseudoplastic and it is very small for PP‐g‐MAH affecting rheological behavior of the PP/IFR composite. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 257–262, 2002  相似文献   

15.
膨胀阻燃剂/蒙脱土协同作用对聚丙烯性能的影响   总被引:3,自引:0,他引:3  
以膨胀型阻燃荆(IFR)为阻燃荆、蒙脱土(MMT)为协效剂、PP-g-MAH为增容剂,对聚丙烯(PP)进行阻燃改性.研究了阻燃剂和协效剂对PP燃烧性能、力学性能和加工性能的影响,并运用热重分析(TGA)和差热分析(DTA)表征了阻燃PP的热降解过程,通过扫描电子显微镜(SEM)观察燃烧残余物的炭层形貌.结果表明,MMT的加入削弱了PP/IFR体系的阻燃性能和力学性能,但在一定程度上解决了体系燃烧时的浓烟现象;当IFR用量为35份时,体系的垂直燃烧性能达到FV-0级,燃烧残余物形成致密的炭层,且具有良好的力学性能和加工性能.  相似文献   

16.
张翔  张帆 《中国塑料》2012,(4):92-96
采用自制干法合成的磷-氮膨胀型阻燃剂(磷酸酯三聚氰胺盐,IFR)复配聚磷酸胺(APP)和聚四氟乙烯(PT-FE)阻燃改性聚丙烯(PP),利用极限氧指数法、垂直燃烧法分析了阻燃PP的燃烧性能,通过热重分析仪、傅里叶变换红外光谱仪、扫描电子显微镜和X射线光电子能谱对阻燃PP的热降解过程、燃烧性能、残炭结构进行了分析,并研究了燃烧过程中复配阻燃体系对PP的阻燃机理。结果发现,IFR、APP和PTFE之间具有明显的阻燃协效作用;当阻燃剂总添加量为24%(APP为6%、IFR为17.5%、PTFE为0.5%)(质量分数)时,阻燃PP的极限氧指数达到30.1%,垂直燃烧测试达UL 94V-0级;加入阻燃剂还能提高PP的热稳定性。  相似文献   

17.
为提高聚丙烯(PP)材料的热性能和力学性能,选用膨胀型阻燃剂(IFR)对PP/乙烯-辛烯共聚物(POE)共混体系进行阻燃改性,应用双螺杆共混挤出的方法制备了PP/POE/IFR共混复合体系,对共混复合体系的阻燃性能、力学性能、膨胀炭层以及微观相结构进行了研究。结果表明,少量增容剂马来酸酐接枝POE(POE-g-MAH)的加入使得IFR颗粒的分散更加均匀、分散粒径减小,同时颗粒与聚合物基体间的结合更加紧密,从而对共混复合体系的力学和阻燃性能都有明显的提高,特别是提高冲击强度。当PP/POE/IFR/POE-g-MAH配比为80/17/20/3时,共混复合体系的平均热释放速率、热释放速率峰值、比消光面积平均值、总烟释放量较未添加增容剂的共混复合体系(PP/POE/IFR配比为80/20/20)分别下降了22.4%,14.9%,29.2%,21.8%,冲击强度提高了69.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号