首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以过硫酸铵为引发剂,表面丙烯酰基化的凹凸棒土(AT-MPS)为交联剂,采用水溶液聚合法制备了丙烯酰基化凹凸棒土复合聚(丙烯酸-co-丙烯酰胺)高吸水性树脂[AT-MPS/P (AA-co-AM)].考察了中和度、丙烯酸与丙烯酰胺的单体比、引发剂用量以及凹凸棒土用量对复合吸水树脂吸液性能的影响.采用红外光谱(FTIR)、热失重分析(TGA)以及扫描电镜(SEM)等方法对复合吸水树脂进行了表征.结果表明,丙烯酸中和度为75%、m(AA)∶m(AM) =4∶1、引发剂用量为0.8%、AT-MPS用量为8%时,复合吸水树脂的最大吸水倍率为347.7 g/g,最大吸盐水倍率为43.5 g/g.红外光谱分析结果表明,凹凸棒土参与了聚合交联反应;SEM表明,凹凸棒土在复合吸水树脂中具有良好的分散性.  相似文献   

2.
对微波辐射下丙烯酸(AA)、丙烯酰胺(AM)和凹凸棒的水溶液聚合反应进行研究,合成凹凸棒复合P(AAAM)高吸水树脂,探讨微波功率、辐射时间、单体配比、中和度、引发剂用量、交联剂用量等对高吸水性树脂吸液倍率的影响,并用红外光谱对产物的结构进行表征.合成的高吸水树脂吸水倍率迭1 580 g/g,在质量分数为0.9%的食盐水中的吸液倍率达170 g/g.  相似文献   

3.
P(AA/AM/APEG)/纳米二氧化硅复合高吸水树脂的合成及性能   总被引:1,自引:0,他引:1  
以丙烯酸(AA)、丙烯酰胺(AM)、烯丙基聚氧乙烯醚(APEG)为单体,再引入纳米二氧化硅(nano-SiO_2),以过硫酸铵为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备了P(AA/AM/APEG)/纳米二氧化硅有机/无机复合高吸水性树脂,考察了交联剂加量、引发剂加量、纳米二氧化硅加量对树脂吸水倍率的影响,并用红外光谱和扫描电镜对产物进行了表征。结果表明:合成最佳条件加入纳米二氧化硅能提高树脂的吸水性能,粒径在80~120目时,复合树脂吸水倍率达到1 865 g/g,P(AA/AM/APEG)树脂吸水倍率为1 681g/g;温度在20~60℃时,复合吸水树脂吸水倍率变化幅度不大;pH在6~8时,其吸水性能最好,吸水倍率为1 865~1 444 g/g;此外,复合树脂具有较好的保水性能,树脂常温下保存15 d,其保水率达到83.2%。红外光谱和扫描电镜分析表明,纳米二氧化硅成功接枝到聚合物上并形成海绵状结构。  相似文献   

4.
以丙烯酸(AA)、丙烯酰胺(AM)为单体对黄原胶(XG)进行接枝改性,再以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸铵(APS)为引发剂,加入凹凸棒黏土,采用溶液聚合法合成了一种新型复合高吸水性树脂。通过单因素试验研究了AA中和度、交联剂用量、引发剂用量、反应温度和凹凸棒黏土用量等因素对该树脂吸水(吸盐水)性能的影响,利用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪对其结构和热性能进行了表征。结果表明:制备高吸水性树脂的最佳工艺条件为AA中和度70%,反应温度70℃,w(交联剂)=0.06%,w(APS)=1.0%,w(凹凸棒黏土)=5%;在最佳工艺条件下制备的高吸水性树脂,其最大吸水倍率、吸盐水倍率分别为827、109 g/g。  相似文献   

5.
利用Discover微波精确有机合成系统及其单模聚焦微波辐射技术、空压气体同步冷却技术对丙烯酸(AA)、丙烯酰胺(AM)和有机蒙脱土(OMMT)的水溶液聚合反应进行了研究,合成了P(AA-AM)/OMMT高吸水性树脂,并在Discover微波精确有机合成系统的标准模式下,探讨了AA中和度、微波辐射时间和功率、交联剂用量、引发剂用量和蒙脱土用量对树脂吸液倍率的影响。结果表明,当微波辐射功率为150 W,辐射时间为60 s,AA中和度为75 %,AA/AM/OMMT质量比为10.0/2.5/0.8,交联剂用量为0.02 %,引发剂用量为0.7 %时,合成的高吸水性树脂吸水倍率可达1520 g/g,在质量分数为0.9 %的食盐水中吸液倍率达165 g/g。  相似文献   

6.
以氧化石墨烯(GO)为改性剂,丙烯酸(AA)、丙烯酰胺(AM)为单体,N,N-亚甲基双丙烯酰胺(NMBA)为交联剂,偶氮二异丁咪唑啉盐酸盐(Va-044)为引发剂,采用水溶液聚合法制备了GO-聚(AA-AM)[P(AA-AM)]吸水树脂,并研究了GO对吸水树脂吸水性能的影响。结果表明,GO改性吸水树脂的最佳制备条件:中和度为80%,GO,NMBA,Va-044用量分别为AA质量的0.3%,0.7%,0.7%,m(AA)∶m(AM)为3∶1,得到的吸水树脂的吸水倍率为293.0 g/g。GO的加入明显改善了吸水树脂的溶胀速率、保水性能及重复使用性能。  相似文献   

7.
以造纸黑液、丙烯酸(AA)、丙烯酰胺(AM)为原料,以过硫酸铵(APS)为引发剂,采用溶液聚合法制备了木质素接枝共聚丙烯酸-丙烯酰胺高吸水树脂;采用红外光谱对树脂进行了初步表征,测定了树脂的吸水性能;利用控制变量法研究了单体配比、丙烯酸中和度、引发剂用量、反应温度对树脂吸水倍率的影响;最佳合成条件为:NAM:NAA=0.2,AA中和度为60%,引发剂用量为0.1%,聚合温度为70℃,此时树脂对去离子水的吸水倍率为730g·g-1。  相似文献   

8.
以聚乙烯醇(PVA)、丙烯酸(AA)、丙烯酰胺(AM)、尿素(Urea)为原料,过硫酸钾(KPS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法合成了具有尿素缓释功能的PVA/P(AA-AM)/Urea复合高吸水树脂。通过FTIR、TG、DSC、SEM对树脂的结构进行了表征,并从吸水倍率、吸水速率、尿素释放率等方面对树脂进行了性能测定。通过单因素实验探讨了PVA用量、AM用量、KPS用量、MBA用量、尿素用量、AA中和度对树脂吸水倍率的影响。结果表明:在最佳工艺条件(AA 10.0 g,以AA质量为基准加入10%AM、15%PVA、0.4%KPS、0.05%MBA,尿素10.0 g,AA中和度为70%)下,合成的吸水树脂吸水倍率可达到505 g/g,吸盐水倍率可达到88 g/g;此条件下合成的高吸水树脂初始吸水速率可达86.58g·min/g;将树脂在湿度10%、温度25和40℃的烘箱中静置4h,释水率分别为40.9%和68.0%;树脂中的尿素在蒸馏水中可持续缓释13 d左右,弱酸性和中性环境有利于尿素持续释放。  相似文献   

9.
对微波辐射下丙烯酸(AA)和丙烯酰胺(AM)的水溶液聚合反应进行研究,合成P(AA-AM)高吸水性树脂,探讨丙烯酸中和度、单体配比、微波辐射时间、交联剂用量和引发剂用量等对吸液倍率的影响,并用红外光谱对产物的结构进行表征.40 s合成的高吸水性树脂吸水倍率可达1600 g/g,在质量分数为0.9%的食盐水中的吸液倍率达160 g/g.  相似文献   

10.
以β-环糊精(CD)、丙烯酸(AA)、丙烯酰胺(AM)作为原料,偶氮二异丁腈为引发剂,N-N’-2-甲基双丙烯酰胺为交联剂,采用反相乳液聚合的方法制备CD-P(AA-AM)高吸水性树脂。研究了合成树脂中交联剂用量、溶液pH对树脂吸液能力的影响,并对树脂在不同氯化物盐溶液中的吸液能力进行了分析。结果表明,当交联剂的用量为单体质量的0.05%时,可制得吸水率较好的CD-P(AA-AM);该树脂在pH<2时吸水很少,最大吸水倍率为35g/g。在2CaCl2>FeCl3。  相似文献   

11.
王艳 《应用化工》2011,40(6):997-998
利用棉花杆作为基准材料,以过硫酸钾(APS)为引发剂引发单体丙烯酰胺(AM)和丙烯酸(AA)接枝共聚制备高吸水树脂的最优合成条件为:引发剂APS用量为棉杆的5%,单体AM与AA的质量比为7∶3,棉杆∶单体质量比为1∶5,AA中和度80%,反应时间3 m in,交联剂N,N-亚甲基双丙烯酰胺用量为5%,树脂吸生理盐水率135 g/g。  相似文献   

12.
丙烯酸类共聚物超吸水树脂的合成研究   总被引:1,自引:0,他引:1  
用丙烯酸(AA)和丙烯酰胺(AM)作原料,以氢氧化铝为交联剂,过硫酸盐为引发剂,通过溶液聚合法,合成了高吸水性树脂聚(丙烯酸-丙烯酰胺)(P(AA-AM))共聚物。讨论了其在蒸馏水和NaCl水溶液中的吸液性能,考察了单体配比、丙烯酸中和度、交联剂用量、反应温度、引发剂用量等条件对树脂吸水性能的影响。结果表明,最佳合成丁艺为:n(AM):n(AA)为O.3-0.4,AA的中和度为70%,过硫酸钾和单体的质量比为0.2%-0.3%,氢氧化铝和单体的质量比为0.03%-0.05%,聚合温度为55-60℃。测得的吸水倍率为1050g/g。  相似文献   

13.
以天然高粱秸秆(SS, 颗粒直径>180目)作为纤维素源,N, N?亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾(KSB)引发剂,复配坡缕石(PGS)黏土,通过与丙烯酰胺(AM)及部分中和的丙烯酸(AA)接枝共聚制备低成本高吸水树脂SS-g-P(AA/AM)/PGS。运用扫描电镜(SEM)和红外光谱(FTIR)对高吸水树脂的形貌及结构进行了表征,并测试了其吸水性能及热稳定性。结果表明,在坡缕石和高粱秸秆的添加量占反应体系的19.8%时,SS-g-P(AA/AM)/PGS对蒸馏水和自来水的最大吸收量分别为273.0g/g和66.7g/g,且热稳定性较好。通过研究树脂的吸水溶胀过程研了材料的吸水动力学行为,结果表明SS-g-P(AA/AM)/PGS吸自来水和蒸馏水的过程分别符合Fickon扩散模型和non-Fickon扩散模型。  相似文献   

14.
以天然高粱秸秆(SS,颗粒直径>180目)作为纤维素源,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾(KSB)为引发剂,复配坡缕石(PGS)黏土,通过与丙烯酰胺(AM)及部分中和的丙烯酸(AA)接枝共聚制备低成本高吸水树脂SS-g-P(AA/AM)/PGS。运用扫描电镜(SEM)和红外光谱(FTIR)对高吸水树脂的形貌及结构进行了表征,并测试了其吸水性能及热稳定性。结果表明,在坡缕石黏土和高粱秸秆的添加量占反应体系总质量的19.51%时,SS-g-P(AA/AM)/PGS对蒸馏水、自来水、黄河水的最大吸收量分别为273.0、66.7、60.4 g/g,且热稳定性较好。通过研究树脂的吸水溶胀过程确定了材料的吸水动力学行为,结果表明,SS-g-P(AA/AM)/PGS吸自来水和蒸馏水的过程分别符合Fickon扩散模型和non-Fickon扩散模型。  相似文献   

15.
刘淑琼  林秋月 《广东化工》2013,(24):193-195
本实验采用溶液聚合法,以丙烯酸(AA)和丙烯酰胺(AM)为单体,氢氧化铝作为交联剂,过硫酸钾为引发剂合成高吸水性树脂,并探讨了单体丙烯酰胺与丙烯酸的配比率、丙烯酸的中和度、交联剂用量、聚合温度、引发剂对高吸水树脂吸液性能的影响.结果显示当丙烯酰胺和丙烯酸单体的配比率0.3~0.4,丙烯酸的中和度60 %~70%,交联剂的用量约占单体0.03 %~0.05%,引发剂用量约占单体的0.2%加.3%,聚合温度为55~60℃时,合成树脂的吸水倍率达最大,为995.35 g/g.  相似文献   

16.
采用N,N’-亚甲基双丙烯酰胺为交联剂,过硫酸钾/硫代硫酸钠为引发剂,通过微波辐射将丙烯酰胺(AM)和丙烯酸(AA)接枝到纤维素,制备了具有重金属吸附性能的树脂,并采用FTIR对产物结构进行了表征。结果表明,当纤维素含量为AA的10%,AM:AA=3:1,交联剂和引发剂用量分别为AA的1.0%和0.65%,AA中和度为70%时,在280 W微波功率辐射下,仅需要300 s即可制得对Cu~(2+)饱和吸附度为65 mg·g-1的重金属吸附树脂,且该工艺过程无须预处理和后处理,直接获得干燥的吸附树脂。  相似文献   

17.
尹沾合  张友全  谭沛 《应用化工》2007,36(12):1207-1210,1214
以含阻聚剂的工业级丙烯酸(AA)、丙烯酸甲酯(MA)及木薯淀粉、丙烯酰胺(AM)为原料,采用反相悬浮法,使用自配分散剂,环己烷为连续相,过硫酸钾和亚硫酸氢钠为引发剂,N,N-亚甲基双丙烯酰胺为交联剂合成了高吸水树脂。结果表明,最佳工艺条件为:m(淀粉)∶m(AA)∶m(AM)=1.0∶4.5∶0.9,MA、交联剂加入量分别为5.0%,0.3%(相对AM和AA总质量),引发剂(两次引发)浓度分别为2.0,13.5 mmol/L,油水比例为1.90∶1.00(体积比)。在上述条件下制得的树脂的吸水率≥600 g/g,吸盐率≥60 g/g,环己烷回收率为97.3%。由于引入适量的MA,产物吸水率和吸盐率提高了20%,产物形态由最初的粘接颗粒变成分散颗粒。  相似文献   

18.
以过硫酸铵(APS)为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,采用反相悬浮乳液聚合法合成了丙烯酸(AA)-丙烯酰胺(AM)-2-丙烯酰胺基辛烷基磺酸钠(NaAMC8S)三元共聚高吸水树脂,研究了引发剂含量、交联剂含量、AA中和度对树脂吸液性能的影响。结果表明:磺酸基单体NaAMC8S的加入显著提高了吸水树脂的盐水吸收能力,当引发剂含量为0.2%,交联剂含量为0.02%,中和度为75%,加入NaAMC8S为0.5%时,共聚树脂吸自来水的量为601mL/g,吸0.9%Nacl水溶液的量为154mL/g。  相似文献   

19.
采用溶液聚合法,以丙烯酸(AA)和丙烯酰胺(AM)为单体,N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂.合成出丙烯酸-丙烯酰胺接枝共聚高吸水树脂.探讨了单体比[m(丙烯酸):m(丙烯酰胺)]、交联剂和引发荆用量、单体中和度及聚合温度对树脂吸水率的影响.IR光谱表明,丙烯酸和丙烯酰胺发生了接...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号