首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 688 毫秒
1.
Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.  相似文献   

2.
Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has been studied. The permeability coefficient was obtained based on the pressure drop data and the Darcy’s law. In three filtration experiments, pure carbon dioxide at 283 K, nitrogen at 85 K and liquid helium at 18 K are adopted, respectively. It is found that the permeability coefficient decreases at the working temperature due to the cold shrink of the filter element at cryogenic temperature. Then, two kinds of feed slurries, mixture of liquid nitrogen and solid carbon dioxide at 85 K, and mixture of liquid helium and solid nitrogen at 18 K, flow into the filter cell. The solid particles are deposited on the filter surface to form a filter cake and the purified liquid flows through the filter. It is found that the pressure drop evolution shows the same trend on these two temperatures, which can be divided into three stages with high filtration efficiency, indicating the feasibility of the filter for cryogenic application. However, variant cake resistances are obtained, which is resulted from the different interactions between solid particles in the feed slurry at lower working temperature.  相似文献   

3.
A mathematical model for constant pressure filtration is established. The distribution of hydraulic pressure within the cake and the medium resistance are measured. The medium resistance Rm is calculated from the suppositional filtration time Ore. It is demonstrated that Rm is nearly a constant for a given filter cloth.  相似文献   

4.
The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contains six candle filters, which are arranged in the form of equilateral hexagon. The variation of the areal density of the filter cake during the filtration and the back-pulse process were analyzed. The coupling effect between filters, gas and solid, filtration and pulse cleaning process were investigated, respectively. The numerical results show a good approach to predict the particle distribution in the vessel and the particle deposition on the filter element. This study provides the base for the intensive study on the analysis of the gas-particle flow in the filter vessel.  相似文献   

5.
Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.  相似文献   

6.
The removal of solid impurities and separation of target products from a fermentation broth is becoming more tedious with the utilization of lignocelluloses as source of substrate.2,3-Butanediol,an important chemical used widely is also a main product of sugar-based fermentation carried out by Klebsiella pneumoniae.In this study,we investigated the use of salting-out extraction(SOE) that employed a K2HPO4/ethanol system consisting of 21% ethanol and 17% K2HPO4(mass fraction) to separate 2,3-butanediol from the viscous Jerusalem artichoke-based fermentation broth.After SOE,about 98% of solid matters was removed,and the viscosity decreased from 72.5 mPa s in the original fermentation broth to 4.4 mPa s in the top phase.The partition coefficient and yield of 2,3-butanediol reached 13.4 and 99%,respectively,and 89% of soluble proteins was removed from the broth.The results showed that SOE is an efficient way for isolating 2,3-BD from a highly viscous fermentation broth by removing much of the solid matters within the broth.  相似文献   

7.
Melt crystallization of anhydrous milk fat and subsequent filtration of the slurry is a common process for obtaining milk fat fractions with different physical and chemical properties. The crystallization mechanism is very complex and little is known about how the crystallizer conditions and the crystal size distribution (CSD) affect the filtration process. The objective of this study was to characterize the fractionation process and determine which geometric parameters of the crystallizer affect the filtration step. Two scales of fractionation were studied, 0.6 L and 3.6 L, with crystallization at 28°C. The slurry was pressure-filtered after 24 h at 500 kPa in a 1-L chamber. Impeller diameters and speeds were varied for both scales. Photomicroscopy and spectrophotometry were used to characterize the crystallization process, and filtration rates were measured by weighing the amount of filtrate passing through the filter. Filtration resistance values, calculated using the constant pressure filtration equation, as well as photomicroscopy results indicated that the agglomerates and crystals that formed had different morphological characteristics for the different mixing and flow regimes in the crystallizer. Crystallization conditions that provide an optimal filtration time, a solid fraction with minimal liquid entrainment, and a CSD with an intermediate range of sizes (80–500 μm) having good packing properties for filtration were found.  相似文献   

8.
A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m~3·h~(-1) to 3.0 m~3·h~(-1) not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.  相似文献   

9.
The complicated reaction mechanism and the character of competitive reactions lead to a stringent requirement for the catalyst of C4 alkylation process. Due to their unique properties, ionic liquids (ILs) are thought to be new potential acid catalysts for C4 alkylation. An analysis of the regular and modified chloroaluminate ILs, novel Br?nsted ILs and composite ILs used in isobutane/butene alkylation shows that the use of either ILs or ILs coupled with mineral acid as homogeneous catalysts can help to greatly adjust the acid strength. By modifying the struc-tural parameters of the cations and anions of the ILs, the solubility of the reactants could also be adjusted, which in turn displays a positive effect on improving the activity of ILs. Immobilization of ILs is an effective way to mod-ulate the surface adsorption/desorption properties and acid strength distribution of the solid acid catalysts. Such a process has a tremendous potential to reduce the deactivation of catalyst and enhance the activity of the solid acid catalyst. The development of novel acid catalysts for C4 alkylation is a comprehensive consideration of acid strength and its distribution, interfacial properties and transport characteristics.  相似文献   

10.
Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing attention and still remains challenging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification(controlling of ambient humidity), were employed and proved to be both effective. The regeneration frequency of the filter could be reduced by 55% with ultrasonic atomization, while steam humidification could lead to a 78% reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an optimized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m-2upon the ultrasonic atomization and 720 g·m-2upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.  相似文献   

11.
Unified nonlinear model is proposed for the prediction of consecutive solid–liquid filtration and expression at the constant pressure. This model is based on the Darcy–Terzaghi filtration-consolidation equations modified to consider power-law pressure dependence of the specific cake resistance, and transforming Darcy law to the linear form. The model considers nonuniform structure of compressible filter cakes obtained by filtration and following expression. The profiles of local compressive pressure and local cake characteristics are simulated and compared for different moderately and highly compressible filter cakes (H.K. kaolin, CaCO3, silica, activated sludge) based on the analytical and numerical solutions of the model. It is shown that the behavior of solid–liquid expression depends from the initial structure of compressed materials. Consolidation ratio U of the filter cakes with initially nonuniform structure formed by filtration differs from that of semi-solid materials with initially uniform structure. Different methods of determination of consolidation coefficient are analyzed and compared for nonuniformly structured filter cakes.  相似文献   

12.
叙述了国内外过滤与分离技术的发展和趋势。介绍了在节能型压榨过滤、陶瓷过滤、纳米过滤等3种节能型过滤技术的研究进展与结果;并针对难过滤物料及高精度过滤与分离的要求,分析了难过滤物料的特点,针对酶解液过滤的应用实例,提出了改善物料性质和强化过滤的有效途径,即添加助滤剂进行掺浆过滤,降低比阻,控制滤饼厚度,降低滤饼阻力的薄层滤饼过滤,这2种强化过滤技术的集成应用于某个难过滤物料分离的应用实例。  相似文献   

13.
《分离科学与技术》2012,47(15):2263-2269
A dynamic membrane is defined as a cake layer which forms on a support material, for example, filter cloth or mesh when the liquid to be filtered includes suspended particles. Formation of an effective dynamic cake layer is highly related with the retention of particles on the support material surface. Therefore, support material properties are considered to be of prime importance in the performance of dynamic membrane treatment systems. This study investigates the effect of support material properties including pore size and structure of the material on dynamic membrane formation and performance. In this concept, a comparative evaluation was made between support materials which have different yarn types. The results showed that high total suspended solids removal efficiency (>98%) could be achieved by using dynamic membrane filtration technology. Mono-monofilament and staple filter cloths were determined as the most appropriate materials in terms of the critical fluxes which were 9.2 L/m2 · h and 17–19 L/m2 · h for mono-mono filament and staple materials, respectively. However, considering the results of more long-term experiments, mono-monofilament filter cloth was found more suitable for cake layer accumulation. Therefore, we postulate that mono-monofilament cloth can be used in dynamic membrane filtration systems as an alternative to traditional membranes in anaerobic membrane bioreactors.  相似文献   

14.
A spatially resolved one dimensional pressure filtration model was developed for a slurry of edible fat crystals. The model focuses on the expression step in which a cake is compressed to force the liquid through a filter cloth. The model describes the local oil flow in the shrinking cake modeled as a porous nonlinear elastic medium existing of two phases, viz. porous aggregates and interaggregate liquid. Conservation equations lead to a set of two differential equations (vs. time and vs. a material coordinate ω) for two void ratios, which are solved numerically by exploiting a finite-difference scheme. A simulation with this model results in a spatially resolved cake composition and in the outflow velocity, both as a function of time, as well as the final solid fat contents of the cake. Simulation results for various filtration conditions are compared with experimental data collected in a pilot-plant scale filter press.  相似文献   

15.
Cross-flow filtration is has found considerable application in solid/liquid separation but is little-used in filtration of gases. In this filtration mode, a component of the particle-laden flow passes through the filter, depositing particles on the surface, while another component remains parallel to the surface, causing shear on the deposited cake. Solid/gas separation is usually carried out in the “dead-end” filtration mode, where the aerosol arrives at the filter on trajectories that are approximately perpendicular to it. Earlier studies [V. Sibanda, R.W. Greenwood, J.P.K. Seville, Powder Technology 118 (2001) 193-202] demonstrated that cross-flow filtration can be applied to gas filtration and that under certain operating conditions, particle aggregation can occur on the surface and the aggregates can subsequently be removed by the through-flow and collected in a downstream device. Particle size distribution measurements of the filter cakes formed at different cross-flow conditions also suggest that significant segregation of particles occurs in this filtration mode. Finer particles were observed to report to the filter cake at low cross-flow ratios and larger ones at higher cross-flow ratios. In this paper, measurements of the particle size distribution of filter cakes formed under a variety of cross-flow conditions were carried out and a mathematical model to describe the segregation was developed. The model is found to predict the segregation behaviour observed from the experimental measurements reasonably accurately. Segregation enhances the overall particle capture efficiency of the downstream device leading to a purer gas product and makes cross-flow gas filtration an attractive option.  相似文献   

16.
Fibrous filters are highly efficient in removing micrometer particles, but their performance in the nanometer particle range is still little known. The aim of this study was to evaluate pressure drop and collection efficiency during nanoparticles cake formation using commercial fibrous filters. The filter media used were High Efficiency Particulate Air (HEPA) and polyester filters. The aerosols were generated by a commercial inhaler using a 5 g/L solution of NaCl and the particles produced were in the size range from 6 to 800 nm, with a peak at around 40 nm. A superficial velocity (vs) of 0.06 m/s was employed. During the filtration, the maximum pressure drop established was ?P = ?Pf +980Pa, where ?Pf is the initial pressure drop of the filter. The collection efficiency was determined for a clean filter and for intermediate pressure drops. The filtration curves obtained showed that the HEPA filter provided greater surface filtration, compared to the polyester filter. Comparison of the collection efficiencies for clean filters revealed that the HEPA filter was highly efficient, even in the absence of cake, while the polyester filter showed initial collection efficiencies of between 20 and 40% for particles in the size range from 100 nm to 1000 nm. However, after formation of the filter cake, the collection efficiencies of both filters were almost 100% during the final stage of filtration. This shows that the fibrous filter can be applied in several industrial processes with highly efficient nanoparticle separation, after the formation of a thin layer cake filtration.  相似文献   

17.
《分离科学与技术》2012,47(5):786-793
The role of polysaccharide on the “dead-end” microfiltration of microbial cells is studied. Yeast and blue dextran are used as typical samples of microbial cells and polysaccharide, respectively. The filter cake becomes more compressible in the early periods of filtration and exhibits much higher filtration resistance when dextran molecules co-exist in the cake structure. A cake compression mechanism is proposed to explain the pressure effects on the cake structure and filtration resistance. For the two-component cakes, the dextran molecules deform easily even under a pressure as low as 30 kPa, while significant yeast deformation is observed when pressure is higher than 100 kPa. It is attributed to the depletion of most solid compressive pressures by deformed dextran molecules. The cake porosity data indicate that the cake compressibility is higher under low filtration pressure, and blue dextran plays a significant role on the cake structure and occupies a considerable volume in the cake. A resistance model is also derived for understanding the relationship between the average specific cake filtration resistance and filtration pressure. The cake filtration resistance is determined by the effective volume fraction of each component in cake and nearly the same as that of blue dextran under low pressure.  相似文献   

18.
《分离科学与技术》2012,47(16):2281-2289
Vertical ultrafiltration experiments of silica colloid and bovine serum albumin solution were conducted in the single-pass mode by using a hollow fiber membrane module and beneficial in measuring the time evolution of the growth rate of the filter cake during filtration. The extremely small mass flux of the concentrate enabled us to highly concentrate the feed solution on the principle of vertical ultrafiltration in which the filter cake formed on the membrane surface is exfoliated continuously. Both growth and re-entrainment rates of the filter cake formed in vertical ultrafiltration were evaluated from the experimental data of the filtration rate and the mass fraction ratio of the concentrate on the basis of the mass balance within the hollow fiber membrane module. As a consequence, it was found that the re-entrainment rate of the filter cake increased almost linearly with the filtration time in the initial period of filtration and then tended to rapidly approach a constant value. The filter cake stopped growing under this dynamically balanced condition. The variations of the average specific resistance of the filter cake with time were also determined from the time evolutions of both the filtration rate and the growth rate of the filter cake.  相似文献   

19.
A novel mode of operation for electrofiltration is presented. The newly developed operation procedure allows for cake removal without disassembling the chamber. Highly viscous filter cakes are discharged from the filtration chamber by inserting air which permits a rapid restart of the process. The cleaning time could be reduced from about 10 min to a few seconds. The semicontinuous operation is liable to full automation and allows for cake discharge and filtration in a short period of time. In successive cycles was proved that the process efficiency is maintained using the same membrane. A fully continuous system can be accomplished by assembling several units in parallel in a single filtration press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号