首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of multiple-input multiple-output (MIMO) wireless channels is limited by both the spatial fading correlation and rank deficiency of the channel. While spatial fading correlation reduces the diversity gains, rank deficiency due to double scattering or keyhole effects decreases the spatial multiplexing gains of multiple-antenna channels. In this paper, taking into account realistic propagation environments in the presence of spatial fading correlation, double scattering, and keyhole effects, we analyze the ergodic (or mean) MIMO capacity for an arbitrary finite number of transmit and receive antennas. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is allocated to each of the transmit antennas. Using some statistical properties of complex random matrices such as Gaussian matrices, Wishart (1928) matrices, and quadratic forms in the Gaussian matrix, we present a closed-form expression for the ergodic capacity of independent Rayleigh-fading MIMO channels and a tight upper bound for spatially correlated/double scattering MIMO channels. We also derive a closed-form capacity formula for keyhole MIMO channels. This analytic formula explicitly shows that the use of multiple antennas in keyhole channels only offers the diversity advantage, but provides no spatial multiplexing gains. Numerical results demonstrate the accuracy of our analytical expressions and the tightness of upper bounds.  相似文献   

2.
In this paper, for spatial multiplexing with limited feedback, a quantized principal component selection (QPCS) precoding scheme is proposed that achieves comparable capacity to the closed-loop multiple-input multiple-output (MIMO) and furthermore adapts to various fading channel conditions without any additional feedback bits and transmit channel state information (CSI). We propose a systematic design method for a codebook consisting of a finite number of unitary matrices based on a maximizing minimum distance criterion in the one- dimensional angular domain and show that the method outperforms the Grassmannian subspace packing method in various fading channel conditions. The proposed QPCS precoding scheme allows for adjustment of the precoding matrix based on limited feedback information on the principal vectors approximating a MIMO channel in the angular domain according to various channel conditions. Furthermore, for practical implementation of the QPCS precoding scheme, we propose a structured precoder optimization procedure and show that the proposed procedure induces a negligible capacity loss compared with the exhaustive precoder optimization, even with considerably reduced complexity.  相似文献   

3.
改善频率选择性多输入多输出(MIMO)系统的信道容量,具有重要的理论和现实意义。基于最大信道容量准则,提出一种适合MIMO频率选择性衰落信道的预编码新方法。该方法将预编码器建模为一个有限冲击响应(FIR)滤波器,利用秩松弛将原非凸优化问题转换成为半定规划(SDP)问题,并结合特征值分解设计预编码器。仿真实验结果和分析表明,相对于扩展均匀信道分解(EUCD)等其它现有算法,该算法仅需较少的滤波器阶数即可显著提升系统的信道容量,具有较低的实现复杂度。  相似文献   

4.
Spatial multiplexing techniques send independent data streams on different transmit antennas to maximally exploit the capacity of multiple-input multiple-output (MIMO) fading channels. Most existing multiplexing techniques are based on an idealized MIMO channel model representing a rich scattering environment. Realistic channels corresponding to scattering clusters exhibit correlated fading and can significantly compromise the performance of such techniques. In this paper, we study the design and performance of spatial multiplexing techniques based on a virtual representation of realistic MIMO fading channels. Since the nonvanishing elements of the virtual channel matrix are uncorrelated, they capture the essential degrees of freedom in the channel and provide a simple characterization of channel statistics. In particular, the pairwise-error probability (PEP) analysis for correlated channels is greatly simplified in the virtual representation. Using the PEP analysis, various precoding schemes are introduced to improve performance in virtual channels. Unitary precoding is proposed to provide robustness to unknown channel statistics. Nonunitary precoding techniques are proposed to exploit channel structure when channel statistics are known at the transmitter. Numerical results are presented to illustrate the attractive performance of the precoding techniques.  相似文献   

5.
Progressive linear precoder optimization for MIMO packet retransmissions   总被引:4,自引:0,他引:4  
This paper investigates the optimal linear precoder design for packet retransmissions in multi-input-multi-output (MIMO) systems. To fully utilize the time diversity provided by automatic repeat request (ARQ), we derive a sequence of successive optimal linear ARQ precoders for flat fading MIMO channels, which minimize the mean-square error between the transmitted data and the joint receiver output. The optimization is subject to an overall transmit power constraint. This progressive linear ARQ precoder combines the appropriate power loading and the optimal pairing of channel matrix singular values in the current retransmission with previous transmissions. This optimal pairing is a special feature unique to our sequential ARQ precoding approach. Simulation results demonstrate the effectiveness of this optimized ARQ precoding in reducing symbol MSE and detection bit-error rate.  相似文献   

6.
We consider Gaussian multiple-input multiple-output (MIMO) frequency-selective spatially correlated fading channels, assuming that the channel is unknown at the transmitter and perfectly known at the receiver. For Gaussian codebooks, using results from multivariate statistics, we derive an analytical expression for a tight lower bound on the ergodic capacity of such channels at any signal-to-noise ratio (SNR). We show that our bound is tighter than previously reported analytical lower bounds, and we proceed to analytically quantify the impact of spatial fading correlation on ergodic capacity. Based on a closed-form approximation of the variance of mutual information in correlated flat-fading MIMO channels, we provide insights into the multiplexing-diversity tradeoff for Gaussian code books. Furthermore, for a given total number of antennas, we consider the problem of finding the optimal (ergodic capacity maximizing) number of transmit and receive antennas, and we reveal the SNR-dependent nature of the maximization strategy. Finally, we present numerical results and comparisons between our capacity bounds and previously reported bounds.  相似文献   

7.
On the Ergodic Capacity of Rank-1 Ricean-Fading MIMO Channels   总被引:1,自引:0,他引:1  
This paper investigates the ergodic capacity of Ricean-fading multiple-input-multiple-output (MIMO) channels with rank-1 mean matrices under the assumption that the channel is unknown at the transmitter and perfectly known at the receiver. After introducing the system model and the concept of ergodic capacity of MIMO channels, we derive the explicit expressions for the expected values of the determinant and log-determinant of complex noncentral Wishart matrices. Subsequently, we obtain new upper and lower bounds on the ergodic capacity of rank-1 Ricean-fading MIMO channels at any signal-to-noise ratio (SNR). We show that our bounds are tighter than previously reported analytical bounds, and discuss the impact of spatial fading correlation and Ricean K-factor with the help of these bounds. Furthermore, we extend the analysis of ergodic capacity to frequency selective spatially correlated Ricean-fading MIMO channels. We demonstrate that the calculation of ergodic capacity of frequency selective fading MIMO channels can be converted to the calculation of the one of equivalent frequency flat-fading MIMO channels. Finally, we present numerical results that confirm the theoretical analysis  相似文献   

8.
In this paper, affine precoding is used to investigate the tradeoffs that exist while using the transmitter resources on training versus information symbols. The channel input is a training vector superimposed on a linearly precoded vector of symbols. A block-fading frequency-selective multi-input multi-output (MIMO) channel is considered. To highlight the tradeoffs between training and data symbols, the Fisher information matrix (FIM) is derived under two circumstances: the random parameter vector to be estimated contains 1) only fading channel coefficients and 2) unknown data symbols as well as the channel coefficients. While strategy 1 corresponds to the receiver structure in which the channel is estimated initially and the channel measurement is utilized to retrieve the data symbols, strategy 2 corresponds to the structure in which channel and symbol estimations are performed jointly. The interesting outcome of the study in this paper is that minimizing the channel Cramer-Rao bound (CRB) for strategies 1 and 2 under a total average transmit power constraint leads to different affine precoder design guidelines.  相似文献   

9.
Orthogonal space-time block coding (STBC) is an open-loop transmit diversity scheme that decouples the multiple-input multiple-output (MIMO) channel, thereby reducing the space-time decoding into a scalar detection process. This characteristic of STBC makes it a powerful tool, achieving full diversity over MIMO fading channels, and requiring little computational cost for both the encoding and decoding processes. In this paper, we exploit the single-input single-output equivalency of STBC in order to analyze its performance over nonselective Nakagami fading channels in the presence of spatial fading correlation. More specifically, we derive exact closed-form expressions for the outage probability and ergodic capacity of STBC, when the latter is employed over spatially correlated MIMO Nakagami fading channels. Moreover, we derive the exact symbol error probability of coherent M-PSK and M-QAM, when these modulation schemes are used along with STBC over such fading channels. The derived formulae are then used to assess the robustness of STBC to spatial correlation by considering general MIMO correlation models and analyzing their effects on the outage probability, ergodic capacity, and symbol error probability achieved by STBC.  相似文献   

10.
为分析天线间距和散射角等信道物理参数对多输入多输出系统信道容量的影响,提出了一种相关衰落环境中信道容量的分析方法。该方法基于接收均匀圆阵构建了蕴含信道物理参数的衰落相关矩阵。并由此详细推导了3×3多天线系统信道容量的闭式表达。结果表明,相关矩阵特征值的个数和大小决定了系统信道容量的大小。该方法回避了已有算法需求取相关衰落信道特征值概率密度函数的问题,降低了运算量,可以被推广到任意收发天线数的多输入多输出和多输入多输出-频分复用系统。仿真结果表明,天线间距增大,信道容量随之增大。但是当天线间距增大到衰落相关的第一个过零点时,信道容量达到最大值,再增大天线间距对信道容量影响很小。散射角越大,信道容量收敛到最大值速率越快。  相似文献   

11.
A memoryless linear precoder is designed for orthogonal space-time block codes (OSTBC) for improved performance over block-fading flat correlated Rayleigh fading multiple-input multiple-output (MIMO) channels. Original features of the proposed technique include 1) the precoder can handle both transmit and receive correlation, and 2) the precoder handles any arbitrary joint correlation structure, including the so-called Kronecker (non-Kronecker) correlation models. The precoder is designed to minimize a symbol error-based metric as function of the joint slowly-varying channel correlation coefficients, which are supposed to be known to the transmitter. Several useful properties of the optimal precoder are given, evidencing the impact of receive correlation on transmitter optimization in certain situations. An iterative fast-converging numerical optimization algorithm is proposed. Monte Carlo simulations over fading channels are used to validate our claims.  相似文献   

12.
This paper presents a novel phase precoding (pre-equalization) technique to equalize frequency-selective Rayleigh and Rician slowly fading channels for personal communication systems using phase modulation. In order to achieve intersymbol interference (ISI)-free transmission, the precoding technique pre-distorts the signal transmitted from a base station to a portable unit. The novelty of the technique lies in using a spiral curve design: (1) to ensure the stability of the precoder even in equalizing a non-minimum-phase channel; (2) to obtain an ISI-free received signal; and (3) to keep a constant transmitted signal amplitude. Using the precoder can improve the bit-error-rate (BER) transmission performance without increasing the complexity of the portable unit receiver. The BER performance of coherent quadrature phase-shift-keying (QPSK) with the channel pre-equalization is analyzed theoretically for both Rayleigh and Rician fading channels. Analytical and simulation results demonstrate that coherent QPSK using the proposed channel precoder has a significantly lower BER than that using a conventional decision-feedback equalizer (DFE) because the precoder does not suffer from error propagation  相似文献   

13.
吴晓军  李星  王继龙 《电子学报》2005,33(5):931-934
针对频率选择性衰落多输入多输出(Multiple-Input Multiple-Output,MIMO)结构,提出在各发射天线通道引入直接序列扩频(Direct-Sequence Spread-Spectrum,DSSS)操作以便实现信道的矢量化,然后提出了一种标签延迟发射分集方法和相应的实现频率选择性衰落无线信道估计的盲方法.仿真结果表明了上述标签延迟发射分集方法的有效性及其信道盲估计方法的性能.  相似文献   

14.
基于码本的有限反馈非酉矩阵预编码多用户MIMO系统   总被引:3,自引:0,他引:3  
方舒  李立华  张平 《电子与信息学报》2008,30(10):2419-2422
该文提出了一种基于码本的有限反馈非酉矩阵预编码下行多用户MIMO系统。该方案根据用户反馈的信道信息SINR在发送端进行调度和预编码来提高系统容量。预编码的码本设计依据格拉斯曼空间装箱原理,并将码本中的向量按其相关性构成非酉矩阵来提高预编码增益和抑制多用户共道干扰。新方案反馈量少、复杂度低,在相同情况下比传统的单用户MIMO系统和基于码本的酉矩阵预编码多用户MIMO系统都具有更好的性能。  相似文献   

15.
This paper characterizes the eigenvalue distributions of full-rank Hermitian matrices generated from a set of independent (non)zero-mean proper complex Gaussian random vectors with a scaled-identity covariance matrix. More specifically, the joint and marginal cumulative distribution function (CDF) of any subset of unordered eigenvalues of the so-called complex (non)central Wishart matrices, as well as new simple and tractable expressions for their joint probability density function (PDF), are derived in terms of a finite sum of determinants. As corollaries to these new results, explicit expressions for the statistics of the smallest and largest eigenvalues, of (non)central Wishart matrices, can be easily obtained. Moreover, capitalizing on the foregoing distributions, it becomes possible to evaluate exactly the mean, variance, and other higher order statistics such as the skewness and kurtosis of the random channel capacity, in the case of uncorrelated multiple-input multiple-output (MIMO) Ricean and Rayleigh fading channels. Doing so bridges the gap between Telatar's initial approach for evaluating the average MIMO channel capacity (Telatar, 1999), and the subsequently widely adopted moment generating function (MGF) approach, thereby setting the basis for a PDF-based framework for characterizing the capacity statistics of MIMO Ricean and Rayleigh fading channels.  相似文献   

16.
Multiple-input multiple-output (MIMO) systems can be leveraged to increase capacity in fading channels. Especially in multiuser downlink communication systems, it has been shown that knowledge of channel state information at the transmitter (CSIT) is critical to leverage the capacity gain available from multiple antennas. When duplexing is performed using time division, CSIT can often be successfully obtained when channel reciprocity is available. CSIT acquisition, however, is much more difficult in frequency division duplexing. Sending feedback on the uplink has been shown to be a powerful technique to improve downlink performance in single user MIMO systems. The basic idea is to restrict the CSIT to a B bit codebook so that the mobiles can easily transmit these bits on the uplink. In this paper, we consider the multiuser downlink model with unitary precoding when there is a codebook consisting of 2B unitary matrices that the precoder is restricted to lie in. This codebook is designed offline and known to both the basestation and all users. Each user sends back signal-to-interference plus noise ratio (SINR) information along with binary feedback about the unitary precoder. Based on the CSIT received on the uplink, the basestation selects one of the unitary matrices in the codebook to maximize the sum-rate. For this set-up, we first analyze the sum-rate performance of the unitary precoding scheme. We then show that the codebook of unitary precoders represents a collection of points in a special kind of manifold and show how the achievable sum-rate performance relates to the minimum distance of the codebook points in this space. Finally, we present a framework for constructing the codebook to maximize this minimum distance. Monte Carlo simulation results are presented to show the sum-rate performance of the proposed codebook design.  相似文献   

17.
Transmit antenna diversity has been exploited to develop high-performance space-time coders and simple maximum-likelihood decoders for transmissions over flat fading channels. Relying on block precoding, this paper develops generalized space-time coded multicarrier transceivers appropriate for wireless propagation over frequency-selective multipath channels. Multicarrier precoding maps the frequency-selective channel into a set of flat fading subchannels, whereas space-time encoding/decoding facilitates equalization and achieves performance gains by exploiting the diversity available with multiple transmit antennas. When channel state information is unknown at the receiver, it is acquired blindly based on a deterministic variant of the constant-modulus algorithm that exploits the structure of space-time block codes. To benchmark performance, the Cramer-Rao bound of the channel estimates is also derived. System performance is evaluated both analytically and with simulations  相似文献   

18.
Outdoor MIMO wireless channels: models and performance prediction   总被引:2,自引:0,他引:2  
We present a new model for multiple-input-multiple-output (MIMO) outdoor wireless fading channels and their capacity performance. The proposed model is more general and realistic than the usual independent and identically distributed (i.i.d.) model, and allows us to investigate the behavior of channel capacity as a function of the scattering radii at transmitter and receiver, distance between the transmit and receive arrays, and antenna beamwidths and spacing. We show how the MIMO capacity is governed by spatial fading correlation and the condition number of the channel matrix through specific sets of propagation parameters. The proposed model explains the existence of "pinhole" channels which exhibit low spatial fading correlation at both ends of the link but still have poor rank properties, and hence, low ergodic capacity. In fact, the model suggests the existence of a more general family of channels spanning continuously from full rank i.i.d. to low-rank pinhole cases. We suggest guidelines for predicting high rank (and hence, high ergodic capacity) in MIMO channels, and show that even at long ranges, high channel rank can easily be sustained under mild scattering conditions. Finally, we validate our results by simulations using ray tracing techniques. Connections with basic antenna theory are made.  相似文献   

19.
A new phase precoding technique is developed to combat the intersymbol interference (ISI) resulting from a frequency-selective slowly fading channel in a personal communication system using quadrature phase-shift keying (QPSK). Based on a new dimension partitioning technique, the precoder predistorts only the phase of the transmitted signal to keep a constant transmitted signal amplitude and, therefore, to ensure the stability of the precoder even in equalizing a nonminimum-phase channel. Under the constraint of the constant amplitude, the dimension partitioning method is developed to guarantee the possibility of correct detection for all transmitted information symbols and to further improve the transmission accuracy by increasing the size of the decision regions. Analytical and simulation results demonstrate that over frequency selective Rayleigh and Rician fading channels, the system using the proposed channel precoder can achieve a bit error rate (BER) comparable with that using a conventional decision feedback equalizer (DFE). The precoder can outperform the DFE in an indoor environment where there is a strong direct propagation path. The main advantage of using the precoder is that the impairment of ISI due to multipath propagation on the transmission performance can be mitigated without increasing the complexity of the portable unit receiver. The proposed technique is especially useful for personal communications, where ISI due to multipath fading channels can severely deteriorate the BER transmission performance and where the simplicity of portable units is a vital characteristic of the system  相似文献   

20.
This work investigates the design of linear precoders for ARQ packet retransmissions in multi-input multi-output (MIMO) systems. We consider transmitter precoder design based on partial MIMO channel information in the form of their covariance feedback. Our objective is to maximize the ergodic mutual information provided by multiple (re)transmissions of a packet subject to transmission power constraint. We propose a set of near-optimal successive linear ARQ precoders for flat fading MIMO channels. This progressive linear ARQ precoder combines the appropriate power loading and the reverse-order pairing of singular values in the current retransmission with previous transmissions. This reverse-order pairing is a special feature unique to our sequential ARQ preceding approach with demonstrated performance gains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号