首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

2.
A model using an energy balance is proposed to describe the volume fraction of multiple-interface martensitic transformations. For martensitic transformations without external stresses at quenching temperature T<M s , the volume fraction of martensite (ξ) is proportional to the undercooling (M s T) and inversely proportional to a linear function of the quenching temperature (T); thus, ξ=(M s T)/[M s βM f −(1−β)T], where β is a material constant. For stress-induced martensitic transformations under stress σ ik a with temperature T>M s , the relationship is ξ = ξ0[1 - λ ik σ ik Ms ]-1, where ξ 0 is the initial detectable amount of martensite formed at martensitic starting stress σ ik Ms and λ ik σ is a material constant. It is found that the results obtained from this model are in good agreement with experimental results.  相似文献   

3.
Transformation behavior of TRIP steels   总被引:2,自引:0,他引:2  
True-stress (σ), true-strain (ε) and volume fraction martensite(f) were measured during both uniform and localized flow as a function of temperature on TRIP steels in both the solution-treated and warm-rolled conditions. The transformation curves(f vs ε) of materials in both conditions have a sigmoidal shape at temperatures above Ms σ (maximum temperature at which transformation is induced by elastic stress) but approach initially linear behavior at temperatures below Ms σ where the flow is controlled by transformation plasticity. The martensite which forms spontaneously on cooling or by stress-assisted transformation below Ms σ exhibits a plate morphology. Additional martensite units produced by strain-induced nucleation at shear-band intersections become important above Ms σ. Comparison of σ-ε andf-ε curves indicate that a “rule of mixtures” relation based on the “static” strengthening effect of the transformation product describes the plastic flow behavior reasonably well above Ms σ, but there is also a dynamic “transformation softening” contribution which becomes dominant below Ms σ due to the operation of transformation plasticity as a deformation mechanism. Temperature sensitivity of the transformation kinetics and associated flow behavior is greatest above Ms σ. Less temperature-sensitive TRIP steels could be obtained by designing alloys to operate with optimum mechanical properties below Ms σ.  相似文献   

4.
The variation of the kinetics of the martensite transformation with carbon content and martensite habit plane has been investigated in several Fe−Ni based alloys. Transformation in an Fe-25 wt pct Ni-0.02 wt pct C alloy exhibits predominantly athermal features, but some apparently isothermal transformation also occurs. In a decarburized alloy, on the other hand, the observed kinetic features, such as the dependence ofM s on cooling rate, were characteristic of an isothermal transformation. In contrast, Fe-29.6 wt pct Ni-10.7 wt pct Co alloys with carbon contents of 0.009 wt pct C and 0.003 wt pct C transform by burst kinetics to {259}γ plate. At both these carbon levels, theM b temperatures of the Fe−Ni−Co alloys are independent of cooling rate. It is proposed that the change in kinetic behavior of the Fe-25 pct Ni alloy with the different carbon contents is due to the occurrence of dynamic thermal stabilization in the higher carbon alloy. Dynamic thermal stabilization is relatively unimportant in the Fe−Ni−Co alloys which transform by burst kinetics to {259}γ plate martensite. P. J. FISHER, formerly with the University of New South Wales D. J. H. CORDEROY, formerly with the University of New South Wales  相似文献   

5.
The defects-related microstructural features connected to the premartensitic and martensitic transition of a Ni2MnGa single crystal under a high magnetic field of 50 KOe applied along the [ 1[`1]0 ] \left[ {1\bar{1}0} \right] crystallographic direction of the Heusler phase were studied by the in-situ high-energy X-ray diffuse-scattering experiments on the high energy synchrotron beam line 11-ID-C of APS and thermomagnetization measurements. Our experiments show that a magnetic field of 50 KOe applied along the [ 1[`1]0 ] \left[ {1\bar{1}0} \right] direction of the parent Heusler phase can promote the premartensitic transition of Ni2MnGa single crystal, but puts off martensite transition and the reverse transition. The premartensitic transition temperature (T PM ) increases from 233 to 250 K (−40 to −23 °C). The martensite transition start temperature (M s ) decreases from 175 to 172 K (−98 to −101 °C), while the reverse transition start temperature (A s ) increases from 186 to 189 K (−87 to −84 °C). The high magnetic field leads to a rapid rearrangement of martensite variants below the martensite transition finish temperature (M f ). The real transition process of Ni2MnGa single crystal under the high magnetic field was in-situ traced.  相似文献   

6.
A Cu-15.0 at. pct Sn alloy has been chosen as a model alloy for the study of aging effects in copper-based shape memory alloys. Different thermal aging treatments were carried out to determine the effects of both parent phase and martensite aging on the amount of shape recovery and the characteristic transformation temperaturesM s ,A s , andA f . Aging of the martensite reduces both the amount of shape recovery and the extent of the reverse martensite → parent transformation. High martensite heating rates promote complete shape recovery and reverse transformation while the aging occurring during slow heating can inhibit or prohibit both. But irrespective of the martensite heating rate the transformation temperature hysteresis as given by (M s -A s ) is large for the Cu-15 pct Sn alloy compared to other shape memory alloys exhibiting thermoelastic behavior. On the other hand, some beneficial effects were noted when the Cu-15 pct Sn alloy was aged in the parent phase condition prior to subsequent transformation to martensite. TheM s ,A s , andA f were lowered following prior parent phase aging, possibly because of a change in long range order, but prior parent phase aging was found to diminish the deleterious effect of martensite aging. Both shape recovery and the extent of the reverse martensite → parent transformation are enhanced by prior parent phase aging. The enhancement is greater the higher the aging temperature or the longer the aging time at a given temperature. J. D. STICE, formerly Research Assistant at the University of Illinois  相似文献   

7.
The relative effects of austenite stacking fault energy and austenite yield strength on martensite morphology have been investigated in a series of three Fe-Ni-Cr-C alloys. Carbon content (0.3 wt pct) andM 6 temperature (− 15°) were held constant within the series. Austenite yield strength atM s was measured by extrapolating elevated temperature tensile data. Austenite stacking fault energy was measured by the dislocation node technique. Martensite morphologies were characterized by transmission electron microscopy and electron diffraction techniques. A transition from plate to lath martensite occurred with decreasing austenite stacking fault energy. The austenite yield strength atM s for the low SFE, lath-forming alloy was found to be higher than previously reported for lath-forming alloys. The relative effects of these variables on martensite morphologies in these alloys is discussed.  相似文献   

8.
Shock-impact generated tensile-stress pulses were used to induce B2-to-monoclinic martensitic transformations in two near-equiatomic NiTi alloys having different martensite transformation start (M s ) temperatures. The NiTi-I alloy (M s ≈+27 °C) impacted at room temperature at 2.0 and 2.7 GPa tensile stress-pulse magnitude, showed acicular martensite morphology. These martensite needles had a substructure containing microtwins, typical of “stress-assisted” martensite. The NiTi-II alloy (M s ≈−45 °C) showed no martensite formation when shocked with tensile-stress pulses of 2 GPa. For tensile stresses of 4.1 GPa, the alloy showed spall initiation near the region of maximum tensile-stress duration. In addition, monoclinic martensite needles, with a well-defined dislocation substructure, typical of “strain-induced” martensite, were seen clustering around the spall region. No stress-assisted martensite was formed in this alloy due to its very low M s temperature. The present article documents results of the use of a metallurgical technique for generating large-amplitude tensile stress pulses of finite duration for studies of phase transformations involving changes from a high density to a low density state.  相似文献   

9.
The effect of thermal cycling between the MfAf on the thermal hysteresis, temperature dependence, and the morphology of the martensitic transformation in a Cu-Zn-AI alloy was studied. The hysteresis behavior of the cyclic transformation, as characterized by following the change in electrical resistivity accompanying the transformation changed in two respects: First, the Ms and Af temperature shifted to higher temperatures while the Mf and As temperatures remained constant. Second, the amount of martensite undergoing cyclic transformation decreased. These changes appeared to saturate at 300 cycles and could be partly recovered during room temperature aging. The morphology and mode of transformation also changed. During the first few cycles, transformation occurred in two simultaneous ways: (1) as martensite plates which are observed to grow and thicken in a continuous manner and (2) as plates which form in a “burst” process. After 60 cycles no “burst” type transformation occurred during cooling and plate growth and thickening was stepwise. Formerly Visiting Scholar, Department of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY  相似文献   

10.
The martensite start temperature (Ms), the martensite austenite re‐transformation start temperature (As) and the re‐transformation finish temperature (Af) of six high alloyed Cr‐Mn‐Ni steels with varying Ni and Mn contents in the wrought and as‐cast state were studied. The aim of this investigation is the development of the relationships between the Ms, As, Af, T0 temperatures and the chemical composition of a new type of Cr‐Mn‐Ni steels. The investigations show that the Ms, As and Af temperatures decrease with increasing nickel and manganese contents. The Af temperature depends on the amount of martensite. Regression equations for the transformation temperatures are given. The experimental results are based on dilatometer tests and microstructure investigations.  相似文献   

11.
The effect of austenite prestrain above theM d temperature on the structure and transformation kinetics of the martensitic transformation observed on cooling was determined for a series of Fe-Ni-Cr-C alloys. The alloys exhibited a shift in martensite morphology in the nondeformed state from twinned plate to lath while theM s temperature, carbon content, and austenite grain size were constant. The transformation behavior was observed over the temperature range 0 to -196°C as a function of tensile prestrains performed above theM d temperature. A range of prestrains from 5 pct to 45 pct was investigated. It is concluded that the response of a given alloy to austenite prestrain above theM d temperature can be correlated with the morphology of the martensite observed in the nondeformed, as-quenched state. For the range of prestrains investigated, the transformation of austenite to lath martensite is much more susceptible to stabilization by austenite prestrain above theM d temperature than is the transformation of austenite to plate martensite.  相似文献   

12.
Structure and mechanical properties of Fe−Cr−C−Co steels   总被引:1,自引:0,他引:1  
As part of a continuing program concerning the microstructures and mechanical properties of steels in which particular attention is given to transformation substructures, the present work is concerned with martensite and bainite in Fe−Cr−C steels with and without cobalt. Although cobalt raises theM s temperature it does not affect the extent of twinning for the same carbon level and so M s temperature alone does not control transformation substructure. Thus cobalt is not effective in retaining dislocated martensite as carbon is increased and in this regard cobalt is not beneficial to toughness. TheM s temperatures of the steels were relatively high and hence isothermal transformation yielded mixtures of bainites and tempered martensite depending on the temperature of transformation. The mechanical properties of the isothermally transformed steels were inferior to those of the tempered steels due to the interference of upper bainite or (tempered) martensite during the isothermal transformation. Thus, in the steels having highM s temperatures the twinning tempered martensitic structure had relatively better mechanical properties compared to the isothermally transformed steels. Attempts to produce desirable autotempered structures by air cooling (single heat treatments) were not successful and did not improve the mechanical properties since the structure consisted of a mixture of bainite and martensite. This paper is based upon a thesis submitted by M. RAGHAVAN in partial fulfillment of the requirements of the degree of Master of Science at the University of California.  相似文献   

13.
Pseudoelasticity and the strain-memory effect have been studied in alloys with compositions in the range Cu-33 to 35 wt pct Zn-3 to 3.5 wt pct Sn, having a retainedβ structure and a martensitic transformation below room temperature. The alloys show maximum pseudoelasticities of 8.5 pct for single crystals and 4.5 pct for polycrystals at temperatures close toA f . In single crystals high elasticity is retained to at least 100°C aboveA f but in polycrystals it decreases rapidly aboveA f . The strain-memory effect occurs on deformation belowM s with subsequent heating betweenA s andA f . The two effects are complementary, such that when one is large the other is small and vice versa. The total pseudoelastic and strain-memory recoveries are normally close to 100 pct. Both effects can be explained on the basis of the formation of a particular variant of the martensite giving significant elongations to the specimens. For pseudoelasticity, the initial structure is theβ phase and the oriented martensite reverts to theβ phase on removal of the stress. In the strain-memory effect the initial structure is oriented thermal martensite and the oriented martensite disappears only on heating to betweenA s andA f so that the martensite reverts to theβ matrix. L. C. BROWN, currently on leave from the Department of Metallurgy, University of Melbourne, Victoria, Australia  相似文献   

14.
This article reports a computer simulation study of the microstructures produced by martensitic transformations. In the present work, the transformation strain is dyadic, and the transformation is athermal and irreversible. The transformation occurs in a two-dimensional crystal that is constrained in a matrix that has no net transformation strain and may be subject to external stress. The crystal is divided into elementary cells. The transformation is simulated by computing the elastic strain energy in the linear elastic approximation and transforming the most-favored cell in each step to generate the minimum-energy transformation path. The simulation generates the microstructure at each step of the transformation and plots a temperature-transformation (TT) curve by computing the chemical driving force required to maintain the transformation and assuming that it is proportional to the undercooling. The results show that the matrix constraint causes complex, multivariant microstructures and separatesM sandM f. Multiple variants partly relax the shear part of transformation strain but interfere so that the transformation is difficult to maintain. The dilational part of the transformation strain produces interesting microstructures, such as “butterfly martensite,” in partially transformed crystals. It also increases ΔM since it produces a hydrostatic stress that cannot be compensated by mixing variants. The applied stress can be divided into hydrostatic and deviatoric components. The hydrostatic component changesM swithout altering the microstructure or ΔM. The deviatoric stress changes the relative energies of the variants and produces a microstructure that is rich in the favored variant. It also increases ΔM, since single-variant transformations must be sustained against an accumulating, uncompensated shear. The thermal resistance (ΔM) increases with the magnitude of the deviatoric stress until a high-stress limit is reached and only one variant appears. The microstructure is most complex at intermediate stress, where both variants develop in a complex internal stress field. Cyclic stress dramatically increases the extent of transformation at given maximum load. The martensite that has already formed becomes a source of intense internal stress when the stress is reversed, promoting further transformation.  相似文献   

15.
The shape memory effect associated with the reverse transformation of deformed martensite, pseudoelastic behavior involved in stress-induced martensite formation and the reversion of strained martensite after an applied stress is relaxed aboveA f have been studied. Grain size and specimen geometry effects have been related to the above phenomena. Although recoverable strains as high as 10.85 pct were observed in coarse-grained (“bamboo” type) specimens, the shape memory effect is restricted in fine-grained specimens because of permanent grain boundary deformation and intergranular fracture which occurs at relatively low strains. A fine grain size also acts to suppress pseudoelastic behavior because permanent, localized deformation is generated concurrent with the formation of stress-induced martensite which inhibits reversion of the latter upon release of stress. The apparent plastic deformation of martensite belowM f can be restored by transforming back to the original parent phase by heating toA f (shape memory) or alternatively, can be recovered belowM f by applying a small stress of opposite sign. Martensite deformed belowM f with the same stress maintained while heating persists aboveA f, but reverts to the parent phase in a pseudoelastic manner when the stress is relieved. The athermal thermoelastic martensite, which forms in groups composed of four martensite plate variants, undergoes several morphology changes under deformation. One of the variants within a plate group cluster may grow with respect to the others, and eventually form a single crystalline martensitic region. At a later stage pink colored deformation bands form in the same area and join up with increasing stress, resulting in thermally irreversible kinks. The clusters of plate groups may expand like grain growth or contract as a whole during deformation, or act as immobile “subgrains” which lead to permanent deformation at their boundaries. Stress-induced martensite usually forms as one variant of parallel plates which join up with increasing stress to form single crystalline regions. Further stress leads to pink colored deformation bands, similar to those in the deformed athermal martensite. Other similarities and differences between the stress-induced and athermal martensite have been investigated and are discussed. Formerly with the University of Illinois at Urbana-Champaign  相似文献   

16.
Stress-Assisted and strain-induced martensites in FE-NI-C alloys   总被引:3,自引:0,他引:3  
A metallographic study was made of the martensite formed during plastic straining of metastable, austenitic Fe-Ni-C alloys withM s temperatures below 0°C. A comparison was made between this martensite and that formed during the deformation of two TRIP steels. In the Fe-Ni-C alloys two distinctly different types of martensite formed concurrently with plastic deformation. The large differences in morphology, distribution, temperature dependence, and other characteristics indicate that the two martensites form by different transformation mechanisms. The first type, stress-assisted martensite, is simply the same plate martensite that forms spontaneously belowM s except that it is somewhat finer and less regularly shaped than that formed by a temperature drop alone. This difference is due to the stress-assisted martensite forming from cold-worked austenite. The second type, strain-induced martensite, formed along the slip bands of the austenite as sheaves of fine parallel laths less than 0.5μm wide strung out on the {111}γ planes of the austenite. Electron diffraction indicated a Kurdjumov-Sachs orientation for the strain-induced martensite relative to the parent austenite. No stress-assisted, plate martensite formed in the TRIP steels; all of the martensite caused by deformation of the TRIP steels appeared identical to the strain-induced martensite of the Fe-Ni-C alloys. It is concluded that the transformation-induced ductility of the TRIP steels is a consequence of the formation of strain-induced martensite. Formerly a graduate student at Stanford University  相似文献   

17.
Transmission electron microscopy observations have been carried out for a Cu-14 pct Al-4 pct Ni (wt pct) alloy aged in the thin foil state in an electron microscope. It was found that large cuboidal precipitates of theγ 2 phase and many small domains of a highly ordered phase form in the DO3 matrix during aging. The small ordered domains form preferentially on matrix antiphase boundaries as well as within the antiphase domains. The formation ofγ 2 and the highly ordered phase, both of which are rich in alloy content, depletes the matrix of solute and thus raises the transformation temperaturesM s andM f. The small domains of the highly ordered phase prevent the propagation and reversion of martensite plates, leading to higherM s-Mf andA fins-Af temperature intervals.  相似文献   

18.
Martensitic transformations induced by plastic deformation are studied comparatively in various alloys of three types: Fe-30 pct Ni, Fe-20 pct Ni-7 pct Cr, and Fe-16 pet Cr-13 pct Ni, with carbon content up to 0.3 pct. For all these alloys the tensile properties vary rapidly with temperature, but there are large differences in the value of the temperature rangeM s toM d, which strongly increases with substitution of chromium for nickel or with carbon addition. Using the node method, it is found that the intrinsic stacking fault energy in the austenite drastically increases with temperature in all the chromium-bearing alloys investigated. This variation is consistent with the observed influence of temperature on the appearance of twinning or ε martensite during plastic deformation. Very different α’ martensite morphologies can result from spontaneous and plastic deformation induced transformations, especially in Fe-20 pct Ni-7 pct Cr-type alloys where platelike and lath martensites are respectively observed. As in the case of ε martensite, the nucleation process is analyzed as a deformation mode of the material, using a dislocation model. It is then possible to account for the morphology of plastic deformation induced α’ martensite in both Fe-20 pct Ni-7 pct Cr and Fe-16 pct Cr-13 pct Ni types alloys and for the largeM s toM d range in these alloys. This paper is based upon a thesis submitted by F. LECROISEY in partial fulfillment of the degree of Doctor of Philosophy at the University of Nancy.  相似文献   

19.
The martensite ⇌ austenite transformations were investigated in Fe-Ni-Co alloys containing about 65 wt pct Fe and up to 15 wt pct Co. A change in morphology of martensite from plate-like to lath-type occurred with increasing cobalt content; this change in morphology correlates with the disappearance of the Invar anomaly in the austenite. The martensite-to-austenite reverse transformation differed depending on martensite morphology. Reversion of plate-like martensite was found to occur by simple disintegration of the martensite platelets. Reverse austenite formed from lath-type martensite was not retained when quenched from much aboveA s, with microcracks forming during theM→γ→M transformation.  相似文献   

20.
Experimental information on the transformation temperatures and the thermodynamic properties of the near-equiatomic TiNi alloys is analyzed. Special attention is paid to the estimation of T 0 temperature from experimental M s and A f temperatures. The properties of the TiNi low-temperature phase (B19′) are evaluated from selected experimental data by using a two-sublattice model. The Ti-Ni phase diagram including the B19′ phase is then calculated. It reveals that the equiatomic TiNi parent phase (B2) remains stable from high temperatures until 370 K, and then the B19′ phase becomes thermodynamically stable as a linear compound under 370 K. Thermodynamic quantities such as the T 0 temperature and transformation enthalpy are also calculated and compared with experimental data. Further, the M s temperature is predicted and compared with data from different sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号