首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
目的:筛选出分离纯化峨嵋岩白菜叶总黄酮的最佳大孔树脂型号及工艺条件。方法:通过静态、动态相结合的方法,以黄酮吸附率、解吸率为指标,确定最佳工艺。结果:HPD-600 型树脂具有最佳的吸附和洗脱参数,其最佳工艺为:粗提物水溶液上样总黄酮质量浓度为0.5~0.6mg/mL,上样液pH3~4,吸附流速2mL/min,最大上样量为3BV。吸附后先以3BV 水洗去杂质,再用4BV 的90% 乙醇以2mL/min 的速率进行洗脱,黄酮纯度和回收率分别达29% 和80% 以上。结论HPD-600 可较好地吸附分离峨嵋岩白菜叶总黄酮,纯化后黄酮纯度提高5倍以上,且操作简单、安全、成本低廉,有较高的应用价值。  相似文献   

2.
采用静态-动态吸附与解析相结合的方法,从12种树脂中筛选出纯化明日叶总黄酮最佳的树脂并对其纯化工艺条件进行探讨。结果表明:HPD-600大孔树脂对明日叶总黄酮有较好的吸附、解析效果。最佳纯化条件为:上柱液中总黄酮质量浓度控制在2 mg/m L~3 mg/m L之间,以3 BV/h的流速过柱,树脂达吸附饱和的上样量为2.7 BV;洗脱条件为:用蒸馏水冲洗至无色后,改用4 BV,50%乙醇以2 BV/h流速进行洗脱。经HPD-600树脂纯化后,明日叶总黄酮的纯度由14.46%提升至46.96%,提升近3.2倍。  相似文献   

3.
大孔吸附树脂纯化八角枫根中水杨苷工艺   总被引:1,自引:0,他引:1  
研究大孔树脂纯化八角枫根中水杨苷的最佳工艺条件。以水杨苷的吸附率和解吸附率为评价指标,筛选树脂种类,并优化吸附和洗脱条件。8种大孔吸附树脂中,HPD-826型大孔树脂对水杨苷具有较好的吸附分离性能,最佳的纯化工艺条件为上样液质量浓度45.12μg/mL、最大上样量6.5BV、径高比1:8、洗脱流速3BV/h,先用4BV的水洗柱除去水溶性杂质,再用5BV体积分数30%乙醇溶液洗脱。经HPD-826型大孔树脂处理后的水杨苷回收率可达78%左右,HPD-826大孔树脂对水杨苷纯化的综合性能较好,工艺稳定、可行,适合于工业化生产。  相似文献   

4.
研究大孔树脂纯化马兰总黄酮树脂吸附特性及工艺条件及参数。文中分别进行静态吸附、静态解吸、静态吸附动力学过程(Lagergren准一级动力学方程)、静态吸附等温曲线(Langmuir和Freundich等温吸附方程)、动态吸附实验,从7种大孔树脂中筛选用于马兰总黄酮分离的最佳树脂,并系统研究最佳大孔树脂分离纯化的吸附性能和最优洗脱参数。结果表明:D101型大孔树脂为分离马兰黄酮类组分最佳树脂,其分离的最佳工艺为总黄酮浓度为9.36 mg/mL的样液,以3 BV/h的流速,控制pH值为4~5上柱,用75%乙醇以3 BV/h用量进行洗脱,可获得样品总黄酮纯度达70%以上。  相似文献   

5.
研究大孔吸附树脂分离纯化菜芙蓉黄酮的最佳工艺条件。以总黄酮吸附量和解吸量为指标,进行静态吸附和解吸试验对14种型号大孔树脂进行筛选,再通过动态吸附和解吸试验对纯化工艺参数进行优化。Z801大孔树脂对菜芙蓉总黄酮的吸附与解吸性能最佳。HZ801纯化菜芙蓉黄酮的最佳工艺条件为:上样浓度为1 mg/m L,上样流速2 m L/min,上样量为140 m L;依次用2 BV水洗脱,用70%乙醇以2 m L/min的速率洗脱2.2 BV。在优化工艺条件下,菜芙蓉黄酮的平均吸附率是95.03%,纯化倍数4.04。HZ801型大孔树脂富集黄酮的效果最佳,是一种较理想的分离纯化介质。  相似文献   

6.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

7.
大孔树脂柱层析法纯化蕨菜总黄酮的工艺条件研究   总被引:1,自引:2,他引:1  
从最适样品浓度、吸附速率、pH、上样量、乙醇洗脱液浓度、乙醇洗脱速率、乙醇洗脱用量等方面对AB-8大孔树脂纯化蕨菜总黄酮的工艺条件进行了研究。结果表明:其最适宜工艺条件为黄酮水溶液浓度0.3mg/mL、pH为2、上样量为5mg黄酮/g树脂,以0.5~1mL/min吸附速率进行吸附,4倍床体积的体积分数70%乙醇以0.5~1ml/min的流速进行洗脱效果最佳。未经大孔树脂纯化的蕨菜粗黄酮粉中黄酮含量是18.4%,经AB-8大孔树脂柱层析法纯化后的蕨菜总黄酮可达63.36%,纯度提高约3.4倍,此种方法纯化后得精制黄酮粉相对原粗黄酮粉的得率为18.0%。  相似文献   

8.
大孔吸附树脂法纯化杭白菊总黄酮   总被引:5,自引:0,他引:5  
采用优选树脂纯化杭白菊总黄酮,以分光光度法测定杭白菊总黄酮含量.确定大孔吸附树脂纯化杭白菊总黄酮的最佳工艺条件;AB-8树脂纯化杭白菊总黄酮的工艺参数为:树脂最大静态吸附容量为23.06mg/g(黄酮/树脂),树脂吸附率为89.22%,提取液上样后吸附1 h,用4 BV的70%乙醇进行洗脱,洗脱率可达到96.64%;结果表明,AB-8树脂对杭白菊总黄酮具有良好的吸附和纯化性能.  相似文献   

9.
采用AB-8型大孔树脂对从鼠曲草中提取的总黄酮产物进行分离纯化研究。考察各种因素对树脂吸附和洗脱效果的影响。通过实验得到最佳吸附工艺条件为上样液流速2BV/h、上样液pH4.5、上样液质量浓度1.7mg/mL;最佳洗脱工艺条件为洗脱液体积分数为60%乙醇、洗脱液流速1BV/h和洗脱液用量1.8BV。分离纯化后的总黄酮产品纯度可达35.42%。  相似文献   

10.
探索大孔吸附树脂纯化野生椒蒿总黄酮的工艺和体外抗氧化活性。以总黄酮吸附量和解析量为响应值,考察7种不同的大孔吸附树脂对野生椒蒿总黄酮的吸附和解析能力,再通过动态吸附和解析试验优化工艺条件筛选出最佳的树脂类型为AB-8,并考察野生椒蒿总黄酮对ABTS+的清除能力。研究结果表明,AB-8型树脂对椒蒿总黄酮纯化的较佳工艺为:提取液黄酮质量浓度为1 mg/mL、pH4、上样流速2 BV/h、上样量5 BV、洗脱剂为体积分数60%的乙醇溶液、洗脱剂用量为4 BV。在最佳工艺条件下,纯化后的黄酮提取液浸膏中总黄酮含量由13.6%提高到52.4%。体外抗氧化活性试验表明,椒蒿总黄酮对ABTS+具有清除活性,且随着质量浓度的增加,清除活性有明显加强。  相似文献   

11.
于博  王旭峰  李文  李博  何计国 《食品科学》2009,30(14):132-135
研究委陵菜黄酮的提取及大孔树脂纯化条件。结果表明:委陵菜黄酮的最佳提取条件为溶剂采用60% 乙醇、料液比1:40(m/V)、提取时间75min、超声温度80℃,各因素均对提取率有显著(p < 0.05)影响,此条件下,提取量可达39.329mg/g;HPD600 型树脂对委陵菜中的黄酮有较好的吸附和洗脱效果,柱体积为50ml,其纯化条件为40BV,流速2BV/h,水洗,然后用5BV、60% 乙醇洗脱。经纯化后委陵菜黄酮纯度为60.28%;最终产品中黄酮得率为2.29%。  相似文献   

12.
大孔吸附树脂分离纯化槲寄生中黄酮的研究   总被引:4,自引:0,他引:4  
李俶  倪永年  李莉 《食品科学》2008,29(2):68-71
目的:筛选出分离纯化槲寄生总黄酮的最佳树脂,并对影响分离纯化的因素进行研究,得到优化的纯化条件。方法:选择了四种大孔吸附树脂(AB-8、NKA-9、NKA-Ⅱ和D101)用来分离纯化槲寄生中的总黄酮,采用动态吸附-解吸方法,利用分光光度法测定总黄酮的含量,研究不同的大孔吸附树脂及其不同的工艺条件对总黄酮分离纯化的影响。结果:AB-8分离效果最好,其最佳工艺为上柱原液pH值4左右,上柱速度2BV/h,以40%乙醇为洗脱液控制洗脱液流速1BV/h,洗脱液用量为4BV。经AB-8纯化后,槲寄生产品中黄酮的纯度由12.16%提高到43.56%。结论:AB-8大孔树脂可以较好地分离纯化槲寄生黄酮。  相似文献   

13.
研究陕产重楼中总皂苷利用大孔吸附树脂纯化的最优工艺。应用7种大孔吸附树脂吸附重楼中的总皂苷进行静态实验,筛选得到最佳树脂;通过动态实验确定最佳树脂对重楼总皂苷的纯化的最优工艺参数。结果表明,HPD-400A树脂纯化重楼总皂苷的效果最优,最优工艺条件为上样液质量浓度5mg/mL,上样量8BV,流速3BV/h,解吸流速2BV/h,解吸剂体积分数75%的乙醇,洗脱剂用量4BV,按此工艺条件制备的重楼总皂苷的含量为62.68%;Freundlich等温吸附模型可更好的描述树脂对重楼总皂苷的吸附,采用HPD-400A树脂分离纯化陕产重楼中的总皂苷效果较好。  相似文献   

14.
为了分离、纯化锁阳总黄酮,比较了5种大孔树脂的静态吸附过程,筛选出了适合分离锁阳总黄酮的树脂。结果表明,AB-8树脂对锁阳总黄酮有较好的分离纯化效果,其吸附过程可用Langmuir和Freundlich吸附等温式来描述;吸附条件:溶液质量浓度3.9 mg/mL,pH值为5,吸附体积5 BV,流速2 BV/h,温度25 ℃;洗脱条件:体积分数为60%乙醇洗脱体积5 BV,体积分数为70%乙醇洗脱体积10 BV,流速2 BV/h,锁阳总黄酮纯度由9.83%升高至67.8%,其回收率为84.02%。因此,AB-8大孔树脂较适合分离纯化锁阳总黄酮。  相似文献   

15.
在12种大孔树脂静态吸附和解吸、静态吸附动力学基础上,研究上样液、洗脱剂乙醇浓度对较优大孔树脂动态吸附和解吸率的影响,并以维生素C和芦丁为对照,对甜茶叶粗黄酮与精黄酮的清除DPPH·能力和总抗氧化能力(T-AOC)进行对比分析。结果表明,HPD-450大孔树脂为甜茶叶总黄酮分离纯化的最佳大孔树脂,其最佳纯化工艺条件为:上样液质量浓度为1.2875 mg/mL,上样量100 mL (上样量体积与树脂质量比为10:3),上样液以1.5 BV/h流速上柱,依次用2 BV水洗脱,170 mL 55%乙醇洗脱。纯化后精黄酮纯度为31.79%,回收率为90.49%。甜茶叶粗黄酮、甜茶叶精黄酮、维生素C、芦丁对DPPH·的IC50值分别为0.0187、0.0202、0.0175和0.0265 mg/mL,表明甜茶叶粗黄酮比甜茶叶精黄酮具有较强的清除DPPH·能力,甜茶叶粗黄酮、精黄酮对DPPH·清除能力均低于维生素C而高于芦丁。从总抗氧化能力(T-AOC)效果评判,在0.02 mg/mL浓度组内,甜茶叶粗黄酮总抗氧化能力显著(P<0.05)大于其他;在0.03、0.04 mg/mL浓度组内,甜茶叶粗黄酮总抗氧化能力大于甜茶叶精黄酮但两者差异不显著,而两者均显著(P<0.05)大于维生素C。  相似文献   

16.
焦岩  王振宇 《食品科学》2010,31(16):16-20
目的:研究大孔树脂纯化大果沙棘果渣总黄酮的纯化工艺。方法:对7 种大孔吸附树脂纯化大果沙棘果渣总黄酮的效果进行比较,考察X-5 大孔树脂分离纯化大果沙棘果渣总黄酮的最佳工艺条件。结果:X-5 树脂纯化大果沙棘果渣总黄酮效果最佳,其最适工艺条件为:大果沙棘提取液上样质量浓度2mg/mL,吸附时间2h,用4BV 蒸馏水洗脱除去杂质,然后用4BV 70% 乙醇洗脱,树脂可重复利用5 次以上,此条件下纯化后总黄酮回收率最高为86.78%,纯度可由原来的11.6% 提高到34.1%。  相似文献   

17.
目的:为探索适宜分离和纯化桑白皮多糖的大孔树脂,研究其最佳纯化工艺参数。方法:通过静态吸附-洗脱试验对十种不同型号大孔树脂(H103、HP20、AB-8、X-5、D-101、DM301、DA-201、NKA-9、HPD-722、HPD300)的吸附量、吸附率及解吸率进行考察,优选最佳纯化树脂,并研究了上样液pH、上样质量浓度、上样速度、洗脱剂体积分数、洗脱剂用量及洗脱流速对其纯化工艺的影响,确定最佳纯化工艺参数。结果:D-101型为最优树脂,最佳上样条件为:pH=3.0、上样浓度为4.0 mg/mL、上样速度为2.0 BV/h;最佳洗脱条件为:75%的乙醇洗脱液、洗脱剂用量为3.5 BV、流速为1.0 BV/h。经过该工艺纯化后,桑白皮中多糖的纯度由16.12%±1.20%提高到了74.45%±1.15%。结论:D-101型大孔树脂能够很好的富集、纯化桑白皮中的多糖,为更高效的利用桑白皮资源提供了理论依据。  相似文献   

18.
通过比较11种大孔吸附树脂对胡芦巴黄酮类化合物的静态吸附与解吸性能,筛选出DM130型大孔吸附树脂用于分离纯化胡芦巴种子中的黄酮类化合物。采用单因素方法分析该树脂富集纯化胡芦巴总黄酮的适宜工艺条件,确定优化的工艺条件为:上样量为3.64 mg黄酮/g树脂,上样液pH值5.0,吸附时间2 h,体积分数70%乙醇洗脱,洗脱速率2 mL/min,洗脱体积为150 mL,总黄酮回收率为85.05%,提取物中黄酮含量由7.8%提高到26.5%。  相似文献   

19.
比较D101、AB-8、HPD-100、HPD-400、HPD-500、HPD-722、DM130七种大孔吸附树脂对蛹虫草固体培养基中虫草素的吸附与解吸性能,筛选出HPD-100树脂为最佳树脂,并确定HPD-100树脂吸附分离最佳工艺条件:上样液质量浓度0.6mg/mL、上样流速3BV/h、上样体积6BV;解吸剂为体积分数25%乙醇溶液、解吸流速2BV/h、解吸体积4BV。根据此工艺条件,蛹虫草固体培养基粗提物经HPD-100树脂纯化后,虫草素产品纯度可达14.1%,较粗提物产品提高了8倍多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号