首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
不久前,中科院深圳先进技术研究院医工所研究员吴天准团队研发出一种具有纳米结构的高性能氧化铱/铂纳米锥复合镀层。这种复合镀层有效解决了随着电极阵列化和集成化带来的高电化学阻抗、低电荷存储能力及低电荷注入能力的问题,并显著提高了神经电极的电刺激性能。相关成果在线发表于《电化学学报》上。该研究团队从改善电极稳定性及刺激  相似文献   

2.
前不久,中国科学院深圳先进技术研究院医工所微纳中心研究员吴天准及其研究团队成功研发出一种具有纳米结构的高性能氧化铱/铂纳米锥复合镀层。这种高性能复合镀层有效解决了随着电极阵列化和集成化带来的高电化学阻抗、低电荷存储能力及低电荷注入能力的问题,并显著提高了神经电极的电刺激性能。  相似文献   

3.
Ni-SiC纳米复合镀层的耐高温氧化性能   总被引:5,自引:0,他引:5  
研究了电镀工艺条件对Ni-SiC纳米复合镀层耐高温氧化性能的影响规律.研究表明,经800℃,1.5h灼烧,随着镀层中SiC复合量的增加,复合镀试片总增重略降后上升至最大,后又再下降,对基底金属Fe的耐高温氧化的保护作用先增后减.最佳工艺条件下获得的纳米复合镀试片总增重比Watts镀试片减少1/4,镀层本身的耐高温氧化性能有所增强,而源自基底金属Fe的氧化增重减少近2/3,对基底金属的保护作用明显增强;显微硬度测试表明,灼烧后镀层表面形貌发生了很大的变化,原来结晶细小的蜂窝状结构消失,结晶粗大的瘤状突起明显增多,但显微硬度没有发生明显变化.  相似文献   

4.
利用复合电镀技术,通过向电镀溶液中加入平均粒度为75 nm的Al粉的方法在Ni基材上制备了Ni-28.0 mass%Al纳米复合涂层,XRD和TEM分析表明,Al纳米颗粒均匀分布在Ni纳米晶粒中.1050℃氧化实验表明:Ni-28.0 mass%Al纳米复合镀层的氧化速度明显低于单Ni镀层及Ni基材的,这是因为在氧化过程中Ni-Al纳米复合镀层热生长连续的Al2O3氧化膜.   相似文献   

5.
为确保神经植入电极安全和长期有效的刺激/记录,柔性微电极阵列(fMEA)针对特定的植入环境,其设计和制造工艺应满足生物相容性、高分辨率、柔性和低阻抗等要求。 本文使用柔性基体聚酰亚胺提出了一种fMEA加工制造工艺方法,并探究了多种3D铂金属涂层结构在体外测试过程中性能的表现。与未修饰前的裸铂金属涂层表面相比较,3D微结构涂层在1kHz阻抗最大下降了94.77%,达到了0.824 kΩ,突破了1 kΩ的极限。而新颖的垒晶状结构涂层电极相比于其他形貌涂层电极的电荷存储容量(CSCc)提高程度最大可达6.67倍,达到13.47 mC cm-2。安全电荷注入能力相比较Pt-gray形貌的涂层电极高达19.6倍,达到了2.53 mC cm-2。因此,这种fMEA的加工制造方法将极大的提高神经刺激/记录过程中的分辨率和精准度,为生物医学植入器件的应用提供广阔的应用前景。  相似文献   

6.
李智  刘崇宇  葛毓立  宋万彤  胡德枫 《表面技术》2023,52(10):394-402, 421
目的 提高纳米金属陶瓷复合镀层硬度、耐磨性,以及耐蚀性。方法 在镀液中添加了氧化石墨烯(GO),在合金的基体上制备了Ni-TiN-GO的复合镀层,并对镀层组织结构、成分、显微硬度、耐磨性和耐蚀性进行表征及分析,探究GO的添加量对其组织性能的影响,确定最适宜的GO添加量。结果 最适宜GO含量为0.3 g/L,所得镀层表面平整致密,与基体结合良好,厚度为8.64 μm。晶面表现为双择优取向,晶粒尺寸最小,显微硬度最大,分别为22.8 nm和1 529.1HV。摩擦磨损测试表明摩擦因数为0.8,主要以磨粒磨损为主,具有良好耐磨性能。Ni-TiN-0.3g/LGO复合镀层自腐蚀电流密度较基体和Ni-TiN镀层下降1个数量级,在经过96 h的盐雾试验后,镀层未见开裂,只附着少量腐蚀产物,表现出良好的耐蚀性。结论 当GO的添加量为0.3 g/L时镀层表面最为致密,缺陷减少,并且通过其较大的比表面积可阻碍腐蚀离子通过,进而提高镀层耐蚀性。GO通过在镀液中与Ni2+结合形成复合物共沉积到孔隙缺陷处,同时GO弥散分布于镀层,提供了大量的形核位点,镀层晶粒尺寸下降,因此镀层硬度提高,并且由于GO具有一定自润滑能力,镀层的耐磨性提高。  相似文献   

7.
为了实现汽车零部件环境友好型镀锌防腐蚀处理,利用纳米镀锌和电泳涂装技术的有机结合,分别对酸性和碱性镀液电镀锌进行纳米改性研究.采用金相显微镜和场发射扫描电子显微镜(FE-SEM)研究镀锌层的表面形貌以及复合镀层的断面形貌;测量了镀锌层的塔菲尔(Tafel)曲线;采用百格刀法测试层间结合力并对复合镀层进行中性盐雾试验.结...  相似文献   

8.
Ni-Al2O3纳米复合镀层的氧化性能研究   总被引:1,自引:1,他引:1  
采用复合电镀技术,通过向普通电镀溶液中加入平均粒度为90nm的Al2O3粉的方法在Ni基材上制备了Ni-Al2O3纳米复合涂层,SEM/EDAX分析表明,Al2O3纳米颗粒不仅均匀分布在Nj纳米晶中,而且还细化了基体Ni的晶粒尺寸.1000℃氧化实验表明:弥散分布在镀层中的Al2O3,纳米粒子并没有明显提高Ni的氧化性,但通过阻碍氧化过程中Ni的外扩散从而改变了NiO膜的形成过程.  相似文献   

9.
黄忠平  彭晓  王福会 《金属学报》2006,42(3):290-294
采用复合电沉积法制备出新型的Cu-30Ni-20Cr纳米复合镀层.该镀层的组织结构与常规Cu-Ni-Cr三元合金不同,是由Cu-Ni基固溶体(晶粒尺寸约为60nm)和纳米Cr颗粒(平均尺寸约为28nm)组成.与相同工艺条件下制备的Cu-40Ni合金镀层相比,Cu-30Ni-20Cr纳米复合镀层在800℃空气中的氧化速率显著降低,这是由于它能迅速形成一层连续、致密的Cr2O3膜所致.对Cr颗粒在Cu-30Ni-20Cr纳米复合镀层的高温氧化过程中所起的作用进行了讨论.  相似文献   

10.
纳米金刚石/镍电刷镀复合镀层机械性能研究   总被引:2,自引:0,他引:2  
本文对普通快速镍镀层和纳米金刚石/镍复合镀层的显微硬度和耐磨性进行了研究,分析了纳米颗粒含量、镀层厚度、加热温度等参数对纳米复合镀层显微硬度及摩擦性能的影响。结果表明:由于纳米金刚石的弥散强化作用,使得复合镀层的硬度和耐磨性大幅提高,摩擦系数明显降低。镀液中纳米金刚石含量约30g/L时,镀层硬度最高为650HV,经过300℃处理,硬度仍能保持在480HV之上。  相似文献   

11.
通过电沉积方法制备了Ni-W/SiC纳米复合镀层,利用扫描电子显微镜(SEM)、能谱分析(EDS)和X射线衍射分析(XRD)研究了SiC含量对该复合镀层结构和性能的影响,采用电化学方法研究了Ni-W/SiC纳米复合镀层在质量分数为3.5%NaCl溶液中的耐蚀性。结果表明:SiC纳米颗粒能促进镀层晶粒的形核及生长,显著改变镀层的晶体结构,提高镀层的硬度、耐磨性及耐蚀性;SiC含量过低对镀层耐磨性提高有限,含量过高又容易导致SiC纳米颗粒团聚,影响其分散性,因此当SiC的质量浓度为6~9g/L时所制备的Ni-W/SiC纳米复合镀层具有最佳的性能。  相似文献   

12.
研究了n—Al2O3/Ni纳米复合刷镀层的微观组织及其成形过程中基质金属镍的氧化现象。结果表明:复合刷镀层晶粒细小,n—Al2O3颗粒在复合刷镀层中弥散分布;在刷镀过程中,生成了大量氧化镍,它以单独的NiO颗粒形态或生成的NiO和加入的Al2O3的球形颗粒混合体形态分布在复合刷镀层晶簇内部及晶簇边界区域。提出了NiO的形成机制,即主要通过如下3种途径:①新生成镀层表面镍原子与镀液薄膜中溶解氧发生化学反应;②镍离子与溶解氧,发生电化学反应;③在碱性溶液环境中纳米颗粒表面吸附[OH]^-发生电化学反应生成NiO。  相似文献   

13.
研究在500℃真空扩散不同时间条件下的扩散合金化对Ni-Al纳米复合镀层的结构与抗循环氧化性能的影响。结果表明:扩散不仅导致Ni-Al纳米复合镀层的基体Ni晶粒粗化,还导致Al固溶在基体Ni中,Ni与Al之间形成金属化合物;随着扩散合金化时间的延长,Ni-Al合金涂层中的空洞减少,从而减少了合金涂层在循环氧化过程中出现的穿透性裂纹和内氧化,抑制了氧化膜剥落区瘤状NiO的形成,提高了Ni-Al合金涂层的抗循环氧化性能。  相似文献   

14.
利用Ni与CeO2纳米颗粒共电沉积制备了纳米结构的NiCeO2复合镀层, Ni平均晶粒尺寸为(56±38)nm;对比研究了该复合镀层与粗晶Ni(平均晶粒尺寸约为30μm) 在700℃扩散渗铬5 h后的渗层结构.结果表明,纳米复合镀层上的渗层厚度和渗入Cr浓度都远高于粗晶Ni;800℃下20 h的恒温氧化实验结果表明,纳米复合镀层上渗铬层的抗氧化性能与粗晶Ni相比显著提高.  相似文献   

15.
Ni-Co/纳米金刚石复合镀层抗磨损性能的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用电沉积法在45#钢样品表面制备了含有纳米金刚石的镍-钴合金基复合镀层。对复合镀层的显微硬度和微观结构进行了测试。并考察了阴极电流密度、镀液pH值等主要工艺参数对纳米复合镀层耐磨性的影响。结果表明:纳米金刚石的弥散强化作用,可以有效地提高镀层的硬度。在干摩擦条件下,纳米复合镀层的耐磨性是镍-钴合金镀层的3倍;  相似文献   

16.
纳米颗粒复合电刷镀镀层的微/纳观结构特征   总被引:2,自引:2,他引:0  
在45钢表面制备了n-Al2O3/Ni和n-SiO2/Ni纳米颗粒复合电刷镀层,借助SEM、TEM、HREM等分析手段,在微观和纳观尺度上研究了纳米颗粒复合电刷镀层微观组织特征,分析了纳米颗粒分布、纳米颗粒/基质Ni金属界面结合等微/纳观现象.结果发现:纳米颗粒在基质Ni金属中均匀弥散分布,纳米颗粒与基质Ni金属之间达到了原子尺度的良好结合;基质Ni金属晶格发生了畸变,存在大量原子空位和位错等结构缺陷.这使得纳米颗粒复合电刷镀层具有优良的力学性能.  相似文献   

17.
化学镀纳米金刚石/Ni复合镀层制备及其摩擦学性能   总被引:2,自引:0,他引:2  
研究了金刚石含量、表面活性剂及热处理温度等工艺因素对Ni-P-纳米金刚石灰粉复合镀层的摩擦磨损性能的影响,并对复合镀层的表面形貌及组织结构进行了分析.结果表明:添加爆轰纳米金刚石灰粉能提高复合镀层的耐磨性能.热处理温度与表面活性剂种类对金刚石灰粉复合镀层耐磨性能的影响最大,复合镀层耐磨性能最佳时的工艺参数为:金刚石灰粉含量为4 g/L,热处理温度为400℃,表面活性剂采用SHP,其含量为1:20.  相似文献   

18.
目的 探究镀液中氧化石墨烯(GO)含量对于Ni-GO复合镀层的组织结构、力学性能、耐腐蚀性能的影响,并以此来确定GO的添加量。方法 采用电沉积技术制备Ni-GO复合镀层,并采用正交试验的方法找到Ni-GO复合镀层的优化制备工艺。通过SEM、EDS、XRD、XPS、拉曼等技术对GO和制备的Ni-GO复合镀层的形貌、组织结构进行表征分析,采用硬度仪、摩擦磨损试验仪、电化学工作站等对Ni-GO复合镀层的力学性能及耐蚀性进行分析。结果 采用正交试验的方法得到了Ni-GO复合镀层优化制备工艺条件,GO质量浓度为1.0 g/L,阴极电流密度为5 A/dm2,镀液温度为60 ℃,电镀时间为50 min。基于优化工艺条件下镀层的硬度为596.5HV,沉积速率为6.583 g/(dm2.h)。其中镀液中氧化石墨烯浓度对Ni-GO复合镀层性能影响最大。结论 研究发现,Ni-GO复合镀层底部是Ni含量比较多的菜花头结构,在菜花头上面主要是石墨烯与Ni晶粒镶嵌在一起的尺寸不一的珊瑚状结构。当镀液中GO质量浓度为1.0 g/L时,制备出的Ni-1.0GO复合镀层中石墨烯含量最高,珊瑚状结构连接缝隙变小,组织致密性最好,孔隙缺陷最少。与Ni镀层相比,Ni-1.0GO复合镀层的硬度提高了37.7%,磨损质量损失减少了73.5%,耐蚀速率降低了44.8%。  相似文献   

19.
20.
采用化学镀技术在钢基体材料上制备了Ni-P/纳米金刚石复合镀层,研究了纳米金刚石浓度、搅拌速度等工艺参数时复合镀层的微观组织和摩擦系数的影响.结果表明,在镀液中纳米金刚石浓度相同的条件下,不同的搅拌速度对镀层的表面形貌和性能均有较大影响,镀层的摩擦系数当转速达到200 r/min时为最小,再提高搅拌速度摩擦系数反而会升高.在一定的搅拌速度下,镀层的摩擦系数随镀液中纳米金刚石浓度的提高先降低后上升,浓度为10 g/L.时摩擦系数达到最小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号