首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.  相似文献   

2.
The effects of sheep alpha s1-casein CC, CD and DD genotypes on milk composition and cheese yield were studied. Processed bulk milk was collected from three groups of 15 ewes, carrying alpha s1-casein CC, CD and DD genotypes. CC milk was higher in casein content than CD or DD milk (+3.5 and +8.6% respectively), and had a higher protein: fat ratio and a smaller casein micelle diameter. In addition, DD milk had a significantly lower alpha s1-casein content. The main differences were in curd formation: CC milk had better renneting properties. Cheesemaking trials, carried out in a pilot plant, showed that CC milk had better cheesemaking characteristics than DD milk, while CD milk was intermediate. Both 1 d old and fully ripened cheeses had different fat: dry matter ratios and alpha s1-I-casein electrophoretic mobilities: these were lower for DD cheese. As a consequence, these genotypes could be considered as markers of milk and/or cheese quality.  相似文献   

3.
Two sets of Cheddar cheese were made in which the milk protein level (%, wt/wt) was increased from 3.3 (Control A, CA) to 3.6 (set A) or from 3.3 (control B, CB) to 4.0 (set B) by the addition of phosphocasein (PC), milk protein concentrate (MPC), or freshly prepared ultrafiltered milk retentate (UFR). The cheeses were denoted CA, PCA, MPCA, and UFRA from set A, and CB, PCB, MPCB, and UFRB, from set B, respectively. The level of cheese moisture decreased significantly on increasing milk protein level from 3.3 to 3.6 or 4.0% (wt/wt), but was not affected significantly by the method of protein standardization. The percentage milk fat recovered to cheese increased significantly on increasing the level of milk protein from 3.3 to 3.6% (wt/wt) with PC, and from 3.3 to 4.0% (wt/wt) with PC, MPC, and UFR. Increasing milk protein level from 3.3 to 4.0% (wt/wt) with PC significantly increased the percentage of milk protein recovered to cheese. Actual cheese yield increased significantly with milk protein level. The yield of cheese per 100 kg of milk normalized to reference levels of fat (3.4%, wt/wt) and casein (2.53%, wt/wt) indicated no significant effects of protein content or standardization treatment on yield. However, the moisture-adjusted yield per 100 kg of milk with reference levels of fat and casein increased significantly on increasing the protein content from 3.3 to 3.6% (wt/wt) with MPC and from 3.3 to 4.0% (wt/wt) with PC, MPC, and UFR.  相似文献   

4.
The objective of this study was to examine the synthesis and composition of milk produced by dairy cows that secrete either small milk fat globules (SMFG) or large milk fat globules (LMFG), and to study their response to diets known to alter milk composition. Four groups of 3 multiparous dairy cows were assigned to 2 isoenergetic feeding treatments: a corn silage treatment supplemented with soybean meal, and fresh pasture supplemented with cereal concentrate. The 4 groups comprised 2 groups of 3 dairy cows that produced SMFG (3.44 μm) and 2 groups of 3 dairy cows that produced LMFG (4.53 μm). The SMFG dairy cows produced higher yields of milk, protein, and calcium. Nevertheless, their milk had lower fat and protein contents. Both SMFG and LMFG cows secreted similar amounts of milk fat; therefore, higher globule membrane contents in milk fat were observed in SMFG cows. Higher calcium mineralization of the casein micelles in SMFG cows suggests that it may be possible to improve cheese-making properties even if the lower protein content may lead to lower cheese yields. The SMFG cows secrete milk fat with a higher concentration of monounsaturated fatty acids and a lower concentration of short-chain fatty acids. They also have a higher C18:1/C18:0 ratio than LMFG cows. This suggests that SMFG cows have more significant fatty acid elongation and desaturation. The pasture treatment led to an increase in milk and protein yields because of increased energy intake. It also resulted in lower milk fat yield and fat and protein contents. The pasture treatment led to a decrease in milk fat globule size and, as expected, an increase in monounsaturated and polyunsaturated fatty acid contents. However, it induced a decrease in the protein content, and in calcium mineralization of casein micelles, which suggests that this type of milk would be less suitable for making cheese. This study also shows that there is no correlation between the cows, based on milk fat globule size and diet. These results open up possibilities for improving milk fat quality based on milk fat globule size, and composition. The mechanisms involved in milk fat globule secretion are still to be determined.  相似文献   

5.
A mass balance optimization model was developed to determine the value of the κ-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The κ casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the κ-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can be used to evaluate the economic value of milk components to optimize cheese plant profits.  相似文献   

6.
The use of reverse osmosis (RO) for cheese milk concentration has advantages including obtaining reusable low pollutant permeates and reducing milk transportation costs. However, high levels of lactose and salts in RO concentrates impair their cheesemaking abilities. The objective of this work was to optimise the use of RO concentrates (5–11% protein content) for cheesemaking by pH adjustment. Rennet coagulation kinetics, salt partitioning and cheesemaking properties were studied in comparison with ultrafiltration concentrates. Results showed that concentration by RO induced an increase regarding the coagulation time and the gel maximal firming rate that reached a plateau at 9% protein content. Increases in calcium mineralisation of casein micelles as well as in yield, moisture and lactose content in model cheese were observed. Lowering renneting pH was found to improve the cheesemaking properties of RO concentrates by promoting partial demineralisation of casein micelles, accelerating coagulation kinetics and increasing curd drainage.  相似文献   

7.
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R = 0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r2 ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R = 0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r2 ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF.  相似文献   

8.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels.  相似文献   

9.
Cheese yield mainly depends on the amount and proportion of milk constituents; however, genetic variants of the proteins present in milk may also have an important effect. The objective of this research was to study the effect of the variants A and B of β-lactoglobulin (LG) on cheese yield using a model system consisting of skim milk powder fortified with different levels of a mixture containing α-lactalbumin and β-LG genetic variants (A, B, or A-B) in a 1:2 ratio. Fortified milk samples were subjected to pasteurization at 65°C for 30 min. Miniature cheeses were made by acidifying (pH = 5.9) fortified milk and incubating with rennet for 1 h at 32°C. The clot formed was cut, centrifuged at 2,600 × g for 30 min at 20°C and drained for determining cheese yield. Cheese-yielding capacity was expressed as actual yield (grams of cheese curd per 100 g of milk) and dry weight yield (grams of dried cheese curd per 100 g of milk). Free-zone capillary electrophoresis was used for determining β-LG A or B recovery in the curd during rennet-induced coagulation. The presence of β-LG variant B resulted in a significantly higher actual and dried weight cheese yield than when A or A-B were present at levels ≤0.675% of whey protein (WP) addition. Results of free-zone capillary electrophoresis allowed us to infer that β-LG B associates with the casein micelles during renneting, as shown by an increase in the recovery of this variant in the curd when β-LG B was added up to a maximum at 0.45% (equivalent to 0.675% WP). In general, actual or dried weight cheese yield increased as WP addition was increased from 0.225 to 0.675%. However, when WP addition ranged from 0.675 to 0.90%, a drastic drop in cheese yield was observed. This behavior may be because an increase in the aggregation of casein micelles with a concomitant inclusion of whey protein in the gel occurs at low levels of WP addition, whereas once the association of WP with the casein micelles reach a saturation point at addition levels higher than 0.675%, rearrangements of the gel network result in larger whey expulsion and syneresis. This knowledge is expected to be useful to maximize cheese yield and optimize processing conditions during cheese and cheese analogs manufacturing.  相似文献   

10.
Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions.  相似文献   

11.
Genetic parameters for milk yield, contents of fat, total protein, casein and serum protein, individual laboratory cheese yield, and somatic cell counts (SCC) were estimated from 7492 monthly test-day records of 1119 Churra ewes. Estimates were from multivariate REML using analytical gradients (AG-REML) procedures. Except for fat content, estimates for the other routinely recorded traits (milk yield, protein content, and SCC) agreed with those previously obtained in this and other dairy sheep populations. Protein content and composition had the highest heritabilities and repeatabilities. Heritabilities for protein and casein contents were very similar (0.23 and 0.21, respectively), and genetic correlation between the traits was close to unity (0.99). Accordingly, casein content is not advisable as an alternative to protein content as a selection criterion in dairy ewes; it does not have any compelling advantages and costs more to measure. Individual laboratory cheese yield (ILCY) obtained with Churra ewes had a low heritability (0.08), suggesting that potential for selection for this parameter would be possible but is not recommended. All correlations with ILCY were high and positive except for milk yield. A high SCC was accompanied by an increase in serum protein content and involved a loss in milk yield.  相似文献   

12.
Predictive cheese yield formulas have evolved from one based only on casein and fat in 1895. Refinements have included moisture and salt in cheese and whey solids as separate factors, paracasein instead of casein, and exclusion of whey solids from moisture associated with cheese protein. The General, Barbano, and Van Slyke formulas were tested critically using yield and composition of milk, whey, and cheese from 22 vats of Cheddar cheese. The General formula is based on the sum of cheese components: fat, protein, moisture, salt, whey solids free of fat and protein, as well as milk salts associated with paracasein. The testing yielded unexpected revelations. It was startling that the sum of components in cheese was <100%; the mean was 99.51% (N × 6.31). The mean predicted yield was only 99.17% as a percentage of actual yields (PY%AY); PY%AY is a useful term for comparisons of yields among vats. The PY%AY correlated positively with the sum of components (SofC) in cheese. The apparent low estimation of SofC led to the idea of adjusting upwards, for each vat, the 5 measured components in the formula by the observed SofC, as a fraction. The mean of the adjusted predicted yields as percentages of actual yields was 99.99%. The adjusted forms of the General, Barbano, and Van Slyke formulas gave predicted yields equal to the actual yields. It was apparent that unadjusted yield formulas did not accurately predict yield; however, unadjusted PY%AY can be useful as a control tool for analyses of cheese and milk. It was unexpected that total milk protein in the adjusted General formula gave the same predicted yields as casein and paracasein, indicating that casein or paracasein may not always be necessary for successful yield prediction. The use of constants for recovery of fat and protein in the adjusted General formula gave adjusted predicted yields equal to actual yields, indicating that analyses of cheese for protein and fat may not always be necessary for yield prediction. Composition of cheese was estimated using a predictive formula; actual yield was needed for estimation of composition. Adjusted formulas are recommended for estimating target yields and cheese yield efficiency. Constants for solute exclusion, protein-associated milk salts, and whey solids could be used and reduced the complexity of the General formula. Normalization of fat recovery increased variability of predicted yields.  相似文献   

13.
Scientific studies indicate that the intake of dietary fat and saturated fats in the modern Western diet is excessive and contributes adversely to health, lifestyle, and longevity. In response, manufacturers of cheese and processed cheese products (PCP) are pursuing the development of products with reduced fat contents. The present study investigated the effect of altering the fat level (13.8, 18.2, 22.7, 27.9, and 32.5 g/100 g) in PCP on their chemical and physical properties. The PCP were formulated in triplicate to different fat levels using Cheddar cheese, skim milk cheese, anhydrous milk fat, emulsifying salt (ES), NaCl, and water. The formulations were designed to give fixed moisture (~53 g/100 g) and ES:protein ratio (0.105). The resultant PCP, and their water-soluble extracts (WSE), prepared from a macerated blend of PCP and water at a weight ratio of 1:2, were analyzed at 4 d. Reducing the fat content significantly increased the firmness of the unheated PCP and reduced the flowability and maximum loss tangent (fluidity) of the melted PCP. These changes coincided with increases in the levels of total protein, water-soluble protein, water-insoluble protein, and water-soluble Ca, and a decrease in the molar ratio of water-soluble Ca to soluble P. However, both water-soluble Ca and water-soluble protein decreased when expressed as percentages of total protein and total Ca, respectively, in the PCP. The high level of protein was a major factor contributing to the deterioration in physical properties as the fat content of PCP was reduced. Diluting the protein content or reducing the potential of the protein to aggregate, and thereby form structures that contribute to rigidity, may provide a means for improving quality of reduced-fat PCP by using natural cheese with lower intact casein content and lower calcium:casein ratio, for example, or by decreasing the ratio of sodium phosphate to sodium citrate-based ES.  相似文献   

14.
Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.  相似文献   

15.
The aim of this study was to investigate the effect exerted by the relative content of κ-casein (κ-CN) B in bulk milk κ-CN on coagulation properties and cheese yield of 3 Italian cheese varieties (Montasio, Asiago, and Caciotta). Twenty-four cheese-making experiments were carried out in 2 industrial and 1 small-scale dairy plant. Detailed protein composition of bulk milk of 380 herds providing milk to these dairies was analyzed by reversed-phase HPLC. To obtain 2 experimental milks differing in the relative content of κ-CN B in κ-CN, herds were selected on the basis of bulk milk protein composition and relative content of κ-CN genetic variants. Milk was collected and processed separately for the 2 groups of selected herds. A difference of 20% in the relative content of κ-CN B in κ-CN was obtained for the 2 experimental milks for Montasio and a difference of 15% for Asiago and Caciotta. The 2 experimental milks were of similar protein and CN content, casein number, pH, CN composition, and β-CN genetic composition. For each cheese-making trial, amounts of milk, ranging from 2,000 to 6,000 kg, were manufactured. Each vat contained milk collected at least from 4 dairy herds. Cheese yield after brining and at the end of the aging was recorded. Milk with a greater proportion of κ-CN B in κ-CN (HIGHB) exhibited similar coagulation properties and greater cheese yield compared with milk with a lower proportion of κ-CN B in κ-CN (LOWB). The increased cheese yield observed for HIGHB when manufacturing Montasio cheese was ascribed to a greater fat content compared with LOWB. The probability of HIGHB giving a cheese yield 5% greater than that of LOWB ranged from 51 to 67% for Montasio cheese, but was less than 21% for Asiago and Caciotta cheeses. Variation in relative content of κ-CN B in κ-CN content did not relevantly affect industrial cheese yield when milks of similar CN composition were processed. An indirect effect due to the increased κ-CN content of κ-CN B milk is thought to explain the favorable effects of κ-CN B on cheese yield reported in the literature.  相似文献   

16.
Two experiments were conducted to determine the milk loss of high-yielding Alpine goats resulting from once-daily milking (ODM) and its relationship to udder cisternal size. We investigated the effects of application of this management strategy on milk yield, composition, and technological parameters: lipolysis, fat globule size, and cheese yield. In a second experiment, we investigated the effect of repeated periods of ODM management during lactation. Goats at the beginning of both experiments were at 25 d in milk on average and were previously milked twice daily (twice-daily milking; TDM). In experiment 1, which was conducted for 2 periods (P) of 9 wk (P1, P2), 48 goats were grouped (1, 2, 3, and 4) according to milk yield, parity, and somatic cell count (SCC). Over the 2 periods, goats from group 1 were managed with TDM and those from group 2 were managed with ODM. In group 3, goats were assigned to TDM during P1 and ODM during P2, conversely, those in group 4 were assigned to ODM in P1 and TDM in P2. During P1, the 12 goats from group 3 underwent 2 distinct morning machine milkings to measure milk repartition (cisternal and alveolar) in the udder based on the “atosiban method.” On P1 plus the P2 period of 18 wk, milk loss caused by ODM (compared with TDM) was 16%. In our condition of 24-h milk accumulation, there was no correlation between milk loss and udder cisternal size. Milk fat content, fat globule size, or apparent laboratory cheese yield was not modified by ODM, but milk protein content (+2.7 g/kg), casein (+1.8 g/kg), milk soluble protein concentration (+1.0 g/kg), and SCC increased, whereas lipolysis decreased (−0.3 mEq/100 g of oleic acid). In experiment 2, which was conducted for 4 periods (P1, P2, P3, P4) of 5 wk each, 8 goats, blocked into 2 homogenous groups (5 and 6), were used to study the effects of a double inversion of milking frequency (TDM or ODM) for 20 wk of lactation. Milk loss was 17% and ODM did not modify milk fat or protein contents, SCC, casein, or milk soluble protein concentration, but lipolysis was decreased (−0.3 mEq/100 g of oleic acid). Neither experiment showed the effects of period of ODM management on milk yield, milk fat or protein content, SCC, fat globule size, lipolysis, casein, milk soluble protein concentration, or apparent laboratory cheese yield.  相似文献   

17.
The objective of this work was to find regressions between minor milk proteins or protein fragments in the casein or sweet whey fraction and cheese yield because the effect of major milk proteins was evaluated in a previous study. Proteomic methods involving 2-dimensional gel electrophoresis and mass spectrometry in combination with multivariate data analysis were used to study the effect of variations in milk protein composition in chymosin separated whey and casein fractions on cheese yield. By mass spectrometry, a range of proteins significant for the cheese yield was identified. Among others, a C-terminal fragment of β-casein had a positive effect on the cheese yield expressed as grams of cheese per 100 g of milk, whereas several other minor fragments of β-, αs1-, and αs2-casein had positive effects on the transfer of protein from milk to cheese. However, the individual effect of each identified protein was relatively low. Therefore, further studies of the relations between different proteins/peptides in the rennet casein or sweet whey fractions and cheese yield are needed for advanced understanding and prediction of cheese yield.  相似文献   

18.
A total of 7492 test-day observations for mean contents of fat, protein, casein, serum protein and lactose and individual laboratory cheese yield (ILCY) were obtained, at approximately monthly intervals, from 1119 ewes belonging to eight Churra dairy flocks. The effect of various factors on these variables was examined and phenotypic correlations among all traits were estimated. Least squares analyses showed significant effects of flock test-date, stage of lactation, age of ewe, and number of lambs weaned on almost all variables. Protein content and composition were not affected by the number of lambs weaned. ILCY had an unadjusted mean (26-55 kg cheese/100 l milk) close to those reported for real cheese yield in dairy ewes and was affected similarly to the main milk components. Fat, protein, casein, and serum protein contents, and ILCY, showed a generally increasing trend as lactation progressed. These components reached a minimum at 1 month into lactation, when milk yield was highest, and increased for the remainder of the lactation. ILCY depended mainly on fat, protein and casein contents. Protein and casein contents were closely related and equally correlated with ILCY. An increase in somatic cell count (SCC) was associated with decreased milk yield and decreased lactose content.  相似文献   

19.
《Journal of dairy science》1988,71(7):1711-1719
For 1 yr, monthly milk samples with varying SCC were obtained from 42 Holstein cows. Milk was analyzed for fat, protein, lactose, casein, and SCC and was used for laboratory scale cheese making. Cheese was assayed for fat, protein, total solids, and salt. Losses of milk components in the whey were also determined. Least squares analysis of data, which were adjusted for the effect of milk composition, indicated that levels of SCC in milk were negatively related to fat, protein, total solids, and fat in DM of cheese and positively related to protein in DM and moisture in nonfat substances. An increase of SCC from 100,000 to above 1,000,000/ml resulted in a cheese containing approximately 6.8, 3.6, 4.9, and 1.5% less fat, protein, total solids, and fat in DM, respectively and 4.4 and 2.0% more moisture in nonfat substances and protein in DM. Levels of SCC in milk were positively related to protein losses in the whey. Overall protein losses increased approximately 6.8% for the first million increase in SCC/ml. Regression analyses showed that cheese fat, total solids, fat in DM, and moisture in nonfat substances increased by 4.43, 1.92, 6.50, and 1.07%, respectively, while protein and protein in DM were decreased by 2.37 and 5.36%, respectively, for every percentage increase in milk fat. Cheese protein and protein in DM increased by 2.05 and 4.55%, respectively, while fat, total solids, and fat in DM decreased by 3.19, 1.25, and 4.13, respectively, per percentage increase in milk casein.  相似文献   

20.
Ewes' milk standardized to four different casein/fat (C/F) ratios (0·80, 0·72, 0·67, 0·62) was used for Feta cheese manufacture. Cheese made from the low C/F ratio (0·62) milk had higher fat, fat in dry matter (FDM) and lower moisture and protein content than cheese made from the high C/F ratio (0·80) milk. With increase in C/F ratio, a significant decrease in fat, and FDM content and increase in protein content of Feta cheese was observed. The other components of cheese were not significantly affected by the C/F ratio of milk used. Also, the yield of cheese, expressed as kg of cheese/100 kg milk, decreased with increase in the C/F ratio of milk. On the other hand, yield expressed as kg of cheese with 56% moisture/kg milk fat increased with increasing C/F ratio. The sensory and rheological properties of cheese were not affected by the four C/F ratios of milk. Conclusions are drawn on the application of these results to Feta cheese manufacture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号