首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The objectives of this study were to determine the effect of calving body condition score (BCS) on cow health during the transition period in a pasture-based dairying system. Feed inputs were managed during the second half of the previous lactation so that BCS differed at drying off (BCS 5.0, 4.0, and 3.0 for high, medium, and low treatments, respectively: a 10-point scale); feed allowance was managed after cows were dried off, such that the BCS differences established during lactation remained at the subsequent calving (BCS 5.5, 4.5, and 3.5; n = 20, 18, and 19, for high, medium, and low treatments, respectively). After calving, cows were allocated pasture and pasture silage to ensure grazing residuals >1,600 kg of DM/ha. Milk production was measured weekly; blood was sampled regularly pre- and postpartum to measure indicators of health, and udder and uterine health were evaluated during the 6 wk after calving. Milk weight, fat, protein, and lactose yields, and fat content increased with calving BCS during the first 6 wk of lactation. The effect of calving BCS on the metabolic profile was nonlinear. Before calving, cows in the low group had lower mean plasma β-hydroxybutyrate and serum Mg concentrations and greater mean serum urea than cows in the medium and high BCS groups, which did not differ from each other. During the 6 wk after calving, cows in the low group had lower serum albumin and fructosamine concentrations than cows in the other 2 treatment groups, whereas cows in the low- and medium-BCS groups had proportionately more polymorphonucleated cells in their uterine secretions at 3 and 5 wk postpartum than high-BCS cows. In comparison, plasma β-hydroxybutyrate and nonesterified fatty acid concentrations increased linearly in early lactation with calving BCS, consistent with a greater negative energy balance in these cows. Many of the parameters measured did not vary with BCS. The results highlight that calving BCS and, therefore, BCS through early lactation are not effective indicators of functional welfare, with the analyses presented indicating that both low and high BCS at calving will increase the risk of disease: cows in the low group were more prone to reproductive compromise and fatter cows had an increased risk of metabolic diseases. These results are important in defining the welfare consequences of cow BCS.  相似文献   

2.
The objective of this study was to examine the effects of live yeast (LY) supplementation and body condition score (BCS, 1-5 scale) at calving on milk production, metabolic status, and rumen physiology of postpartum (PP) dairy cows. Forty Holstein-Friesian dairy cows were randomly allocated to a 2 × 2 factorial design and blocked by yield, parity, BCS, and predicted calving date. Treatments were body condition at calving (low for BCS ≤3.5 or high for BCS ≥3.75; n = 20) and supplementation with LY (2.5 and 10 g of LY/d per cow for pre- and postcalving, respectively; control, no LY supplementation; n = 20). The supplement contained 109 cfu of Saccharomyces cerevisiae/g (Yea-Sacc1026 TS, Alltech Inc., Nashville, TN). Daily milk yield, dry matter intake, milk composition, BCS, body weight, and backfat thickness were recorded. Blood samples were harvested for metabolite analysis on d 1, 5, 15, 25, and 35 PP. Liver samples were harvested by biopsy for triacylglycerol (TAG) and glycogen analysis on d 7 precalving, and on d 7 and 21 PP. Rumen fluid was sampled by rumenocentesis for all cows on d 7 and 21 PP. Supplementation with LY had no effect on milk yield, dry matter intake, rumen fluid pH, or blood metabolites concentration of dairy cows with high or low BCS at calving. Feeding LY increased rumen acetate proportion and protozoal population, tended to increase liver glycogen, and decreased rumen ammonia nitrogen during early lactation. Over-conditioned cows at calving had greater body reserve mobilization and milk production and lower feed intake, whereas cows with a moderate BCS at calving had greater feed intake, lower concentrations of nonesterified fatty acids and β-hydroxybutyrate, lower liver TAG and TAG:glycogen ratio, and faster recovery from body condition loss. Additionally, the data suggest that concentrations of liver enzymes in blood might be used as an indicator for liver TAG:glycogen ratio. Results indicate that in the case of this experiment, where the control treatment was associated with an acceptable rumen pH, feeding yeast did not significantly improve indicators of energy status in dairy cows.  相似文献   

3.
This study examined the effect of monopropylene glycol (MPG) supplementation on LH secretion, postpartum interval to first ovulation, and milk production in heifers calving with poor body condition score (BCS). Forty-seven heifers were allocated to 3 treatments: 1) heifers with high BCS (BCH; n = 13) that calved at a BCS of 3.4 (BCS scale of 1 to 5); 2) heifers with low BCS (BCL; n = 17) that calved at a BCS of 2.8; and 3) heifers with low BCS that calved at a BCS of 2.8 and were assigned to receive MPG supplementation (BCL + MPG; n = 17) and grazed pasture ad libitum. Monopropylene glycol was drenched (250 mL) twice daily for 16 wk after calving. Patterns of change in plasma LH were measured at 2 and 5 wk after calving. Pulsatile release of LH at 2 and 5 wk was greater in BCL + MPG and BCH cows compared with the BCL control cows. The BCL + MPG cows had lower NEFA concentrations than did the BCL cows during wk 1 to 6 after calving. At 12 wk postpartum, the proportion of cows cycling was 77, 82, and 28% for the BCH, BCL + MPG, and BCL treatments, respectively. Mean milk fat yield was greater for the BCH treatment during the first 12 wk postpartum compared with the BCL + MPG or BCL treatments, which did not differ from each other. Results of this study indicate that MPG supplementation reduced the interval from calving to first ovulation in heifers having poor body condition at calving.  相似文献   

4.
Retained placenta (RP), defined as fetal membranes not being expelled within 24 h after calving, is a costly disease in multiparous dairy cows that has been linked to immune suppression, infections, elevated lipid mobilization, and depleted status of antioxidants including α-tocopherol, and that increases the risk of other diseases (OD) in early lactation. Early detection of cows at increased risk of developing RP, OD, or both in early lactation could improve treatment success and result in improved milk production and reproductive performance. To identify risk indicators of RP, OD, or both, we used a nested case-control design and compared multiparous dairy cows that developed RP (n = 32) with cows that remained healthy (H; n = 32) or cows that developed OD (n = 32) in early lactation. We compared peripartal body condition score (BCS) as well as serum concentrations of α-tocopherol, metabolites [β-hydroxybutyrate (BHBA), cholesterol, glucose, nonesterified fatty acids (NEFA), and urea N], haptoglobin, and macrominerals (i.e., calcium, magnesium, and phosphorus) on d −21, −14, −7, −3, −1, 0, 1, 3, 7, 14, 21, 28, 35, 42, and 49 postpartum. In addition, average serum concentrations were calculated for each cow for the last 3 wk prepartum, for 3 and 2 wk prepartum combined, for the last week prepartum, and for the morning after calving and compared between groups. The RP cows had lower BCS than the H or OD cows until 2 wk postpartum. During the prepartal periods, RP and OD cows had lower α-tocopherol concentrations (corrected or not for cholesterol concentration) and higher NEFA and BHBA concentrations than H cows. Thus, lower prepartal BCS could be an early predictor for RP risk, and lower α-tocopherol concentrations and higher NEFA and BHBA concentrations could be early predictors for disease.  相似文献   

5.
《Journal of dairy science》2019,102(7):6551-6554
Lameness and body condition are closely related. Recent studies have shown that cows with low body condition score (BCS) have a greater risk for developing lameness than cows with higher BCS. Among other reasons, this relationship might be related to the reduced thickness of the digital fat cushion in lean cows. The digital cushion is not a homogeneous structure but consists of different fat pads and connective tissue. We hypothesized that either high or low BCS will result in concordant adipocyte sizes in the fat pads of the digital cushion and subcutaneous tailhead fat irrespective of the localization of the latter. Right front claws were collected from 18 Holstein Friesian cows. Cows were selected according to their BCS: 9 cows with BCS <3 (low BCS) and 9 cows with BCS ≥3 (high BCS). After dissecting the horn capsule of the lateral claw, samples of the axial and abaxial fat pads were prepared for histomorphological examinations (adipocyte size measurement) and protein abundance of vascular endothelial growth factor A (VEGF-A) via Western blotting. In addition, fat samples were excised from the tailhead of all cows and used for the same purposes. Adipocyte size in tailhead fat was greater in high-BCS than in low-BCS cows. Similar differences between the BCS groups were apparent for adipocytes from the axial fat pad, although adipocytes in tailhead fat were larger than those in the digital cushion. In contrast to that in the axial fat pad and tailhead fat, adipocyte size in the abaxial fat pad was similar in cows from both BCS groups. A relationship between adipocyte size and VEGF-A protein was only confirmed for the axial fat pad, not for the other fat depots. When comparing BCS groups, differences in VEGF-A protein abundance between high-BCS and low-BCS cows were also limited to the axial fat pad, being absent in tailhead fat and the abaxial fat pad. Taken together, our results show that the fat pads from the digital cushion should not be considered uniform adipose tissue locations but rather discrete units reacting differently to fat mobilization.  相似文献   

6.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

7.
8.
The objective of this study was to determine if an association existed among body condition score (BCS), body weight (BW), and udder health, as indicated by somatic cell score (SCS) and cases of clinical mastitis (CM). The data consisted of 2,635 lactations from Holstein-Friesian (n = 523) and Jersey (n = 374) cows in a seasonal calving pasture-based research herd between the years 1986 and 2000, inclusive. Increased BCS at calving was associated with reduced SCS in first- and second-parity cows, and greater SCS in cows of third parity or greater. This relationship persisted for most BCS traits throughout lactation. Body weight was positively associated with SCS, although the effect was greater in Jersey cows than in Holstein-Friesians. Increased BCS and BW loss in early lactation were associated with lower SCS and a reduced probability of a high test-day SCC. Body condition score was not significantly related to CM with the exception of a curvilinear relationship between the daily rate of BCS change to nadir and CM in early lactation. Several BW variables were positively associated with a greater likelihood of CM. Nevertheless, most associations with udder health lacked biological significance within the ranges of BCS and BW generally observed on-farm. Results are important in assuring the public that modern dairy systems, where cows are subjected to substantial amounts of BCS mobilization in early lactation, do not unduly compromise cow udder health.  相似文献   

9.
The onset of lactation in dairy cows is characterized by severe negative energy and protein balance. Methionine availability during this time for milk production, hepatic lipid metabolism, and immune function may be limiting. Supplementing Met to peripartal diets with adequate Lys in metabolizable protein (MP) to fine-tune the Lys:Met ratio may be beneficial. Fifty-six multiparous Holstein cows were fed the same basal diet from 50 d before expected calving to 30 d in milk. From −50 to −21 d before expected calving, all cows received the same diet [1.24 Mcal/kg of dry matter (DM), 10.3% rumen-degradable protein, and 4% rumen-undegradable protein] with no Met supplementation. From −21 d to expected calving, the cows received diets (1.54 Mcal/kg of DM, 10% rumen-degradable protein, and 5.1% rumen-undegradable protein) with no added Met (control, CON; n = 14), CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n = 12), or CON plus Smartamine M (SM; Adisseo Inc.; n = 12). From calving through 30 d in milk, the cows received the same postpartum diet (1.75 Mcal/kg of DM and 17.5% CP; CON), or the CON plus MS or CON plus SM. The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (DM) of feed for MS or SM. Liver tissue was collected on −10, 7, and 21 d, and blood samples more frequently, from −21 through 21 d. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. No differences in prepartal DM intake (DMI) or body condition score were observed. After calving, body condition score was lower (2.6 vs. 2.8), whereas DMI was greater (15.4 vs. 13.3 kg/d) for Met-supplemented cows. Postpartal diet × time interactions were observed for milk fat percentage, milk fat yield, energy-corrected milk:DMI ratio, and energy balance. These were mainly due to changes among time points across all treatments. Cows supplemented with either Met source increased milk yield, milk protein percentage, energy-corrected milk, and milk fat yield by 3.4 kg/d, 0.18% units, 3.9 kg/d, and 0.18 kg/d, respectively. Those responses were associated with greater postpartum concentration of growth hormone but not insulin-like growth factor 1. There was a diet × time effect for nonesterified fatty acid concentration due to greater values on d 7 for MS; however, liver concentration of triacylglycerol was not affected by diet or diet × time but increased postpartum. Blood neutrophil phagocytosis at 21 d was greater with Met supplementation, suggesting better immune function. Supplemental MS or SM resulted in a tendency for lower incidence of ketosis postpartum. Although supplemental MS or SM did not decrease liver triacylglycerol, it improved milk production-related traits by enhancing voluntary DMI.  相似文献   

10.
Jersey × Holstein crossbreds (J×H; n = 76) were compared with pure Holsteins (n = 73) for 305-d milk, fat, and protein production; conception rate; days open; proportion of cows pregnant within fixed intervals postpartum; and body and udder measurements during first lactation. Cows were housed at 2 research locations of the University of Minnesota and calved from September 2003 to May 2005. The J×H were mated to Montbeliarde sires, and Holstein cows were mated to Holstein sires. Best Prediction was used to determine actual production (milk, fat, and protein) for 305-d lactations with adjustment for age at calving, and records less than 305 d were projected to 305 d. The J×H (274 kg) and pure Holsteins (277 kg) were not significantly different for fat production, but J×H had significantly less milk (7,147 vs. 7,705 kg) and protein (223 vs. 238 kg) production than pure Holsteins. The J×H had significantly fewer days open than pure Holsteins (127 vs. 150 d). Also, a significantly greater proportion of J×H were pregnant at 150 and 180 d postpartum than pure Holsteins (75 vs. 59% and 77 vs. 61%, respectively). The J×H had significantly less body weight (60 kg) at calving, but significantly greater body condition (2.80 vs. 2.71). Furthermore, J×H had significantly less udder clearance from the ground to the bottom of the udder than pure Holsteins (47.7 vs. 54.6 cm), and greater distance between front teats (15.8 vs. 14.0 cm) than pure Holsteins during first lactation.  相似文献   

11.
The primary objective of this study was to identify relationships between endometritis and metabolic state during the calving transition and early lactation periods. A subset of mixed age and breed dairy cows (n = 78) from a seasonal, pasture-grazed herd of 389 cows was examined. The selected cows were grouped as having endometritis at d 42 postpartum or being unaffected by endometritis. Endometritis was defined as >6% (upper quartile) of uterine nucleated cells being polymorphonuclear cells (H-PMN; n = 38); unaffected by endometritis was defined as ≤1% of nucleated cells being polymorphonuclear (L-PMN; n = 40). Milk yield was determined at each milking, and milk composition (fat and protein) was determined at 2-wk intervals. Blood samples collected on d −14, 0 (d of calving), 4, 7, 14, 28, and 42 were analyzed for indicators of energy status (nonesterified fatty acids, glucose, and urea), liver function (albumin, globulin, glutamate dehydrogenase, and aspartate aminotransferase), inflammation (haptoglobin), and mineral status (Ca and Mg). Samples collected weekly from d 21 to 63 or 70 were analyzed for progesterone content. The postpartum anovulatory interval was defined to end on the first day postpartum that plasma progesterone concentration was ≥1 ng/mL. A greater percentage of H-PMN cows failed to ovulate before d 63 or 70 (34%) compared with L-PMN cows (10%), although the proportions of cows ovulating within either polymorphonuclear group was similar through d 56 postpartum. Plasma concentrations of albumin and the albumin:globulin ratio were consistently lower in H-PMN cows. Plasma Mg was lower, whereas glutamate dehydrogenase and aspartate aminotransferase were higher, in H-PMN cows during early lactation compared with L-PMN cows. Circulating metabolites indicative of energy status (nonesterified fatty acids, glucose, and urea) were not different between polymorphonuclear groups. Among 3- to 5-yr-old cows, daily milk yield for the first 42 d after calving was lower for H-PMN cows than for L-PMN cows. Among cows >5 yr old, protein percentage was lower in H-PMN cows compared with L-PMN cows. In summary, endometritis at 42 d postpartum in the herd studied was associated with an increased likelihood of remaining anovulatory. These cows had lower albumin concentrations throughout the calving transition period, perhaps indicating impaired liver function, with lower plasma Mg and evidence of hepatocellular damage in early lactation. Similar profiles of nonesterified fatty acids and glucose indicated that energy status was not a risk factor for endometritis.  相似文献   

12.
The objective of this study was to quantify the effect of periparturient body condition score (BCS) and body weight (BW) related traits on the incidence of calving dystocia and stillbirths, and to determine any consequent effect of dystocia and stillbirths on BCS, BW, milk production, udder health, and fertility in grazing Holstein-Friesian dairy cows. Up to 2,384 lactation records with data on calving dystocia or stillbirths were available from one research herd across 15 yr. Mixed models and generalized estimating equations were used to quantify all effects. Body condition score or BW 8 wk precalving or at calving, or change precalving did not significantly affect the odds of a difficult calving or stillbirth. Cows that experienced dystocia lost, on average, more BCS and BW between calving and nadir and had significantly reduced nadir BCS and BW. Incidence of stillbirths did not affect BCS in early lactation, although BW loss postpartum was greater following a stillbirth. A dystocia or stillbirth event was associated with reduced 60-d milk yield (42 and 52 kg less milk produced following a difficult calving or a stillbirth, respectively). The effect of stillbirth on milk yield was independent of dystocia. Cows that experienced dystocia had reduced milk concentration of fat, protein, and lactose, whereas average somatic cell score (natural logarithm of somatic cell count) in the first 60-d postpartum was elevated. There was no significant effect of dystocia or stillbirth on clinical mastitis, but pregnancy rates to first service and throughout the 12-wk breeding season were compromised in cows that had experienced difficulty at calving. The significance of the effects of stillbirth on somatic cell score and reduced fertility were mediated through its association with dystocia. In conclusion, periparturient BCS and BW within the range observed in the current study did not significantly affect incidence of dystocia and stillbirth, but these events negatively affected cow performance in early lactation.  相似文献   

13.
Improving body condition score of thin cows in late lactation is necessary, because cows that are thin at drying off exhibit decreased fertility postpartum and are at increased risk of disease and of being culled in the subsequent lactation. Offering a diet low in crude protein (CP) content in late lactation may help to improve body condition score (BCS) at drying off, whereas imposing an extended dry period (EDP) has been advocated as another way to increase BCS at calving. To test these hypotheses, 65 thin cows (mean BCS 2.25 at 14 wk precalving) were managed on 1 of 3 treatments between 13 and 9 wk prepartum: normal protein control {NP; grass silage + 5 kg/d of a normal protein concentrate [228 g of CP/kg of dry matter (DM)]}, low protein [LP; grass silage + 5 kg/d of a low-protein concentrate (153 g of CP/kg of DM)], or EDP (cows dried off at 13 wk precalving and offered a grass silage-only diet). Both NP and LP cows were dried off at wk 8 prepartum, after which all cows were offered a grass silage-only diet until calving. After calving, all cows were offered a common diet (supplying 11.1 kg of concentrate DM/cow per day) for 19 wk. Between 13 and 9 wk prepartum, LP cows had lower DM intake, milk yield, and body weight than NP cows. Whereas EDP cows had lower serum β-hydroxybutyrate and fatty acid concentrations than those of NP cows, BCS at wk 9 prepartum did not differ between treatments. Cows on the LP treatment continued to have lower DMI and BW than those of NP and EDP cows between 8 wk prepartum and calving, but only EDP cows had a higher BCS at calving. Treatment did not affect calving difficulty score or calf birth weight. Although all cows were offered a common diet postpartum, cows on the LP treatment had lower DM intake and milk fat + plus protein yield than cows on any other treatment during the 19-wk period postpartum, but we found no differences in any postpartum indicator of body tissue reserves. The treatments imposed from wk 13 to 9 prepartum had no effect on any fertility or health parameters examined postpartum. Extending the dry period for thin cows improved their BCS at calving but did not allow these cows to achieve the target BCS of 2.75, and we found no beneficial effects of this treatment on cow performance postpartum. Offering a lower-protein diet to thin cows in late lactation did not improve BCS at calving above that of cows on a normal protein diet, but had unexplained long-term negative effects on cow performance.  相似文献   

14.
A study was conducted to evaluate the potential association between Ca status at calving and postpartum energy balance, liver lipid infiltration, disease occurrence, milk yield and quality parameters, and fertility in Holstein cows. One hundred cows were assigned to 1 of 2 groups based on whole-blood ionized Ca concentration ([iCa]) on the day of calving [d 0; hypocalcemic [iCa] <1.0 mmol/L (n = 51); normocalcemic [iCa] ≥1.0 mmol/L (n = 49)]. Cows were blocked based on calving date and parity. Blood samples were collected approximately 14 d from expected calving date (d −14), the day of calving (d 0), and on d 3, 7, 14, 21, and 35 postpartum for measurement of plasma nonesterified fatty acid, iCa, total Ca, glucose, and total and direct bilirubin concentrations, and plasma aspartate aminotransferase and gamma glutamyl transferase activities. Liver biopsies were obtained from a subset of cows on d 0, 7, and 35 for quantification of lipid content. Milk samples were collected on d 3, 7, 14, 21, and 35 postpartum for measurement of somatic cell count and percentages of protein, fat, and solids-not-fat. Data for peak test-day milk yield, services per conception, and days open were obtained from Dairy Herd Improvement Association herd records. Disease occurrence was determined based on herd treatment records. Hypocalcemic cows had significantly higher nonesterified fatty acids on d 0. Hypocalcemic cows also had significantly more lipid in hepatocytes on d 7 and 35 postpartum. However, no statistically significant differences were observed between groups for plasma aspartate aminotransferase and gamma glutamyl transferase activities or total and direct bilirubin concentrations. Milk protein percentage was lower in hypocalcemic cows on d 21 and 35. However other milk quality variables (somatic cell count, milk fat percentage, and solids-not-fat) and milk yield variables (peak test-day milk yield and 305-d mature-equivalent 4% fat-corrected milk yield) did not differ between groups. No differences were observed between groups in the occurrence of clinical mastitis, ketosis, displaced abomasum, dystocia, retained placenta, metritis, or fertility measures (percentage cycling at 50–60 d postpartum, services per conception, or days open). These data suggest that early lactation fatty acid metabolism differs between cows with subclinical hypocalcemia and their normocalcemic counterparts.  相似文献   

15.
Elevated liver fat content occurs in high-yielding dairy cows during the transition from pregnancy to lactation after fat mobilization and may affect hepatic glucose metabolism, but the degree of liver fat storage is highly variable. Therefore, we studied metabolic and endocrine changes and hepatic glucose metabolism in cows that markedly differ in liver fat content. Multiparous cows from the same herd with high (HFL; n = 10) and low (LFL; n = 10) liver fat contents (mean of d 1, 10, and 21 after calving for each cow, respectively) were studied from 60 d before expected calving to 56 d in milk. Cows were fed ad libitum and all cows received the same diets. Liver samples were taken on d 1, 10, and 21 after calving; mean fat content (±SEM) in liver of HFL cows was 174 ± 9.6 mg/g, whereas mean liver fat content in LFL cows was 77 ± 3.3 mg/g. Blood samples were taken 20 and 7 d before expected calving and 0, 7, 14, 28, and 56 d after calving to measure plasma concentrations of nonesterified fatty acids, β-hydroxybutyrate, glucose, insulin, glucagon, insulin-like growth factor-I, and leptin. In liver, glycogen content as well as mRNA levels of phosphoenolpyruvate carboxykinase, pyruvate carboxylase, glucose-6-phosphatase, and glucose transporter were measured by quantitative real-time PCR. Back fat thickness decreased and dry matter intake increased with onset of lactation, and back fat thickness was higher but dry matter intake was lower in HFL than in LFL. Energy-corrected milk yield did not differ between groups, but milk fat content was higher and lactose content was lower in HFL than LFL at the beginning of lactation. Energy balance was more negative in HFL than in LFL. Plasma nonesterified fatty acids and β-hydroxybutyrate concentrations increased and plasma glucose concentration tended to decrease more in HFL than LFL with onset of lactation. Glucagon to insulin ratios increased more in HFL than LFL with onset of lactation. Hepatic glycogen content was higher in LFL than HFL, whereas mRNA levels of glucose-6-phosphatase and pyruvate carboxylase were higher in HFL than in LFL, and cytosolic phosphoenolpyruvate carboxykinase mRNA level increased similarly after parturition in both groups. In conclusion, an elevated liver fat content was related to greater fat mobilization and reduced feed intake and was associated with effects on hepatic glucose metabolism. As environment and feeding management were the same, individual cow factors were responsible for differences in energy metabolism during the transition period.  相似文献   

16.
The objective of this study was to evaluate the effects of claw horn disruption lesions (CHDL; sole ulcers and white line disease) and body condition score (BCS) at dry-off on survivability, milk production, and reproductive performance during the subsequent lactation. An observational prospective cohort study was conducted on a large commercial dairy in Cayuga County, New York, from September 2008 until January 2009. A total of 573 cows enrolled at dry-off were scored for body condition and hoof trimmed; digits were visually inspected for the presence of CHDL. The BCS data were recategorized into a 3-level variable BCS group (BCSG), with cows with BCS <3 placed in BCSG 1 (n = 113), cows with BCS = 3 placed in BCSG 2 (n = 254), and cows with BCS >3 placed in BCSG 3 (n = 206). Cows in BCSG 2 were 1.35 and 1.02 times more likely to conceive than cows in BCSG 1 and 3, respectively. The cull/death hazard for BCSG 1 cows was 1.55 and 1.47 times higher than for cows in BCSG 2 and BCSG 3, respectively. Milk yield for cows in BCSG 2 (44.6 kg/d, 95% CI 43.4-45.8) was significantly greater than that for cows in BCSG 1 (41.5 kg/d, 95% CI 39.8-43.3). Cows with previous lactation days open ≤91 had 1.6 times higher odds of being classified into BCSG 1 at dry-off; cows with previous lactation mature-equivalent 305-d milk >14,054 kg had a similar 1.6 times higher odds of being classified into BCSG 1. Claw horn disruption lesions were found in 24.4% of the cows (n = 140) at dry-off. Cows without CHDL were 1.4 times more likely to conceive than cows with CHDL. Additionally, lesion cows were 1.7 times more likely to die or be culled than nonlesion cows. Absence of CHDL did not have a significant effect on milk yield. These findings highlight the importance of claw health and BCS at the end of lactation on future survival and performance.  相似文献   

17.
The relationship between energy status and fertility in dairy cattle was retrospectively analyzed by comparing fertility with body condition score (BCS) near artificial insemination (AI; experiment 1), early postpartum changes in BCS (experiment 2), and postpartum changes in body weight (BW; experiment 3). To reduce the effect of cyclicity status, all cows were synchronized with Double-Ovsynch protocol before timed AI. In experiment 1, BCS of lactating dairy cows (n = 1,103) was evaluated near AI. Most cows (93%) were cycling at initiation of the breeding Ovsynch protocol (first GnRH injection). A lower percentage pregnant to AI (P/AI) was found in cows with lower (≤2.50) versus higher (≥2.75) BCS (40.4 vs. 49.2%). In experiment 2, lactating dairy cows on 2 commercial dairies (n = 1,887) were divided by BCS change from calving until the third week postpartum. Overall, P/AI at 70-d pregnancy diagnosis differed dramatically by BCS change and was least for cows that lost BCS, intermediate for cows that maintained BCS, and greatest for cows that gained BCS [22.8% (180/789), 36.0% (243/675), and 78.3% (331/423), respectively]. Surprisingly, a difference existed between farms with BCS change dramatically affecting P/AI on one farm and no effect on the other farm. In experiment 3, lactating dairy cows (n = 71) had BW measured weekly from the first to ninth week postpartum and then had superovulation induced using a modified Double-Ovsynch protocol. Cows were divided into quartiles (Q) by percentage of BW change (Q1 = least change; Q4 = most change) from calving until the third week postpartum. No effect was detected of quartile on number of ovulations, total embryos collected, or percentage of oocytes that were fertilized; however, the percentage of fertilized oocytes that were transferable embryos was greater for cows in Q1, Q2, and Q3 than Q4 (83.8, 75.2, 82.6, and 53.2%, respectively). In addition, percentage of degenerated embryos was least for cows in Q1, Q2, and Q3 and greatest for Q4 (9.6, 14.5, 12.6, and 35.2% respectively). In conclusion, for cows synchronized with a Double-Ovsynch protocol, an effect of low BCS (≤2.50) near AI on fertility was detected, but change in BCS during the first 3 wk postpartum had a more profound effect on P/AI to first timed AI. This effect could be partially explained by the reduction in embryo quality and increase in degenerate embryos by d 7 after AI in cows that lost more BW from the first to third week postpartum.  相似文献   

18.
Multiple lines of inquiry have suggested that a high degree of inflammation in early lactation cows is associated with low productivity and increased disease incidence. In addition, some small studies have suggested that milk production increases in response to antiinflammatory treatment in the first week of lactation. Our objective was to determine if administration of sodium salicylate (SS), a nonsteroidal antiinflammatory drug (NSAID), in the first week of lactation changes whole-lactation productivity and retention in the herd. At calving, 78 cows [n = 39 primiparous (1P); n = 24 second parity (2P); n = 15 third parity or greater (3P)] were alternately assigned to either control (CON) or SS treatments for 7 d postpartum. Sodium salicylate treatment was administered via individual water bowls at a concentration of 1.95 g/L, delivering a mean of 123.3 ± 5.5 g of salicylate/d during the 7-d treatment. For the first 21 d of lactation, dry matter intake, water intake, milk yield, and health were monitored daily, and milk samples were collected twice weekly for milk component analysis. Monthly milk yield and component testing through the rest of the lactation provided data to assess long-term responses, and the effects of treatment on the risk of leaving the herd and on 305-d milk, fat, and protein yields were assessed. During the first 21 d of lactation, we observed no differences in morbidity, except for increased risk of metritis in 3P SS cows. Treatment interacted with parity to influence both 305-d milk and milk fat yields, and a tendency for an interaction was detected for 305-d milk protein yield. Milk yield was 2,469 ± 646 kg greater over the lactation in 3P SS cows compared with 3P CON cows (21% increase) and tended to decrease by 8% in 1P cows treated with SS; no effects were detected in 2P cows. Furthermore, 3P SS cows produced 130 ± 23 kg more milk fat over the lactation (30% increase), with no effects detected for 1P or 2P. Treatment with SS tended to increase 305-d milk protein yield in 3P cows by 14%, with no effects in 1P or 2P cows. A tendency for a treatment × parity interaction was also observed for the risk of leaving the herd. First-parity cows treated with SS tended to have greater risk of leaving the herd than controls (30 vs. 6% risk); however, treatment did not alter herd retention in 2P or 3P groups, and SS had no effect on the risk of leaving the herd overall. Results indicate that SS has long-term effects on lactation of mature dairy cows, particularly on fat yield, but may have negative effects for primiparous cows.  相似文献   

19.
A total of 850 cows distributed among 13 commercial Holstein herds were involved in this study to compare the effects of 2 different dry period (DP) management strategies on milk and component yields as well as body condition score (BCS) over complete lactations. Within each herd and every 2 mo, cows were assigned to a short (35 d dry; SDP) or conventional (60 d dry; CDP) DP management based on previous lactation 305-d milk yield, predicted calving interval, and parity: primiparous (n = 414) and multiparous (n = 436). Cows assigned to CDP were fed a far-off dry cow ration from dry-off until 21 d prepartum, and were then switched to a precalving ration. Cows assigned to SDP were fed the precalving ration throughout their DP. Rations were different across herds, but the late-lactation, precalving, and early lactation rations were identical for both treatment groups within each herd. Additional milk was obtained at the end of lactation from cows assigned to SDP due to the extended lactation. Average daily milk yield in the following lactation was not different between treatments for third- or greater-lactation cows, but was significantly decreased in second-lactation SDP cows. However, when expressed as energy-corrected milk, this difference was not significant. Although lower for primiparous than multiparous cows, body weight and BCS were not affected by DP management strategy. Milk production and BCS responses to treatments varied among herds. Results from the present study suggest that a short DP management strategy could be more appropriate for today's dairy cows, although not suitable for all cows or all herds.  相似文献   

20.
The aim of this study was to assess the welfare and production of cows given an analgesic drug (carprofen, 1.4 mg/kg i.v.) within 6 h after calving. The study was performed in a dairy farm with approximately 1,000 milking cows. Behavior, clinical indices, and production data (milk yield and fertility) of cows treated with carprofen (n = 19) or a placebo (n = 20) were compared. Additionally, differences related to parity (primiparous vs. multiparous) were analyzed. No significant differences were observed in the time of placental expulsion or incidence of clinical disease over the 3 d postpartum, but more animals from the analgesia group were observed eating during the first hours after calving.For unassisted calvings, the rectal temperature 24 h postpartum was lower in the cows given analgesic. Total lactation yields at 305 d in milk were higher in the primiparous cows treated with carprofen. Fewer cows were pregnant at 220 d postpartum in the treated group as the use of carprofen increased the time from calving to conception. This study suggests that pain management after parturition leads to earlier feed intake after calving and that this may lead to higher milk yield in first-lactation animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号