首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用放电等离子烧结及后续热变形技术制备各向异性Nd-Fe-B磁体,研究烧结温度对放电等离子烧结Nd-Fe-B磁体微观组织和磁性能的影响。随着烧结温度在650~900°C范围内的升高,烧结态Nd-Fe-B磁体的剩磁、内禀矫顽力及最大磁能积呈现先升后降的趋势。在800°C下烧结所获得磁体的磁性能最佳。随后,对800°C烧结后具有最佳磁性能的磁体采用放电等离子烧结技术进行后续热变形处理。与初始吸氢-歧化-脱氢-再复合粉末和烧结态磁体相比,热变形磁体拥有更显著的各向异性和更好的磁性能。当热变形温度为800°C且压缩比为50%时,热变形磁体中的Nd2Fe14B晶粒呈扁平片状且不发生异常长大;磁体沿热压方向具有最佳的磁性能:Br、Hcj和(BH)max分别为1.16 T、449 k A/m和178 k J/m3。  相似文献   

2.
烧结NdFeB磁体热压变形后富Nd相的显微组织   总被引:1,自引:0,他引:1  
采用热压变形法对NdFeB磁体晶间富Nd相的显微组织进行了研究,实验结果表明,NdFeB磁体经真空热压变形后,富Nd相不再平均地分布在磁体晶间,而是聚集成团块状或从磁体边缘渗出,显微组织分析表明,富Nd相主要是由α-Dd和Nd2Fe17两相组成,与Nd-Fe合金的共晶组织成分接近,对于晶间添加Al元素的磁体,Al溶入晶间形成Nd2Fe15Al2相弥散地分布在晶界上,这有益于磁体矫顽力的提高;对于晶间添加Cu元素的磁体,晶间没有发现有新相产生。  相似文献   

3.
研究了HDDR各向异性NdFeB永磁材料的矫顽力机理。通过对材料磁化过程的研究以及对其显微组织结构的观察分析,发现其矫顽力机制起源于畴壁挣脱主相Nd2Fe14B晶粒边界以及晶粒团边界富钕相的钉扎机制,其中富钕相对材料畴壁的钉扎是决定其矫顽力的关键因素。通过理论计算,其结果与材料实际的矫顽力十分接近。此外,还进行了验证性实验并提出了改善材料矫顽力的途径。  相似文献   

4.
采用熔体快淬法及真空退火工艺制备了不同淬速的Nd8.5Fe77.7Nb2Co5Ga0.6B6.2粘结磁体,研究了不同淬速下磁体的磁性能及温度系数。结果表明,适当的快淬速度有利于合金退火后的晶粒细化,有效地改善了退火后软、硬磁相间的交换耦合作用。快淬速度对磁体的温度系数有显著的影响,矫顽力温度系数β随着淬速的增加而逐渐降低;随着淬速的增加,剩磁温度系数α先降低后升高,这可能与合金中软、硬磁相间的交换耦合作用的变化有密切的关系。  相似文献   

5.
利用X射线衍射分析(XRD)和BH测试仪分别研究了元素Tb、Zr的添加对HD法制备NdFeB永磁体的微结构及磁性能的影响规律。微结构研究表明,元素Tb、Zr添加前后的磁体都主要由四方相Nd2Fe14B(P42/mnm)和微量的富Nd相构成;但Tb和Zr的添加明显改变了永磁体的取向特性和磁性能;采用HORTA法计算表明,Tb和Zr的添加虽然都使永磁体的(004)、(006)、(008)极密度因子减小,但是室温下磁性能测试表明,Zr的添加降低了磁体的矫顽力,而Tb添加后永磁体的矫顽力有了明显的提升,从2038 kA/m提升到2302 kA/m;Kronmüller-Plot关系曲线表明,3种合金的矫顽力机理均为磁畴成核反转机制。  相似文献   

6.
利用透射电镜、X射线衍射仪、X射线能谱仪,对爆炸压结Nd-Fe-B永磁合金进行微观组织结构的观察和分析。结果表明:爆炸压结Nd-Fe-B的组织主要由基体Nd2Fe14B相、富O相和富Nd相组成;基体相是硬磁相,四方晶体结构,其晶格常数为a=0.88nm和c=1.22nm;富O相形貌呈三角状或层状,分布在3个晶粒交隅处和两个晶粒交界处,其晶体结构均为面心立方(fcc),点阵常数a=0.559nm;富Nd相呈不同块状形貌,镶嵌存基体内或晶界上,其晶体结构为密排六方(hcp),晶格常数a=0.395nm和c=0.628nm:在富O相中O,Nd和Fe的含量(原子分数,下同)分别为45%~60%,20%~40%和10%~12%,块状富Nd相中则为80%~85%Nd和10%~l5%O,同时还发现晶界相中分布着少量的位错。  相似文献   

7.
1 INTRODUCTIONItiswellknownthattheintergranularmi crostructureofsinteredNd Fe Bmagnetsplaysakeyroleindevelopingtheircoercivity[1,2 ] .Earlierstudiesshowedthattheintergranularmicrostructureiscom posedofaNd richphaseandasmallamountofB richphase.Ithasbeenshownt…  相似文献   

8.
利用放电等离子烧结技术(SPS)制备新型烧结磁体SPS NdFeB。为了更好理解磁体的磁性能,尤其是矫顽力和微组织关系的机理,本研究以热处理前后的SPS NdFeB为研究对象,利用扫描电镜(SEM)、高分辨透射电镜(HRTEM)、X射线能谱仪,B-H回线仪分别对磁体的显微组织和高分辨透射电镜像组织和磁性能进行了系统研究。结果表明,经过热处理后,磁体矫顽力明显提高,富稀土相的铁原子与稀土原子比Fe/Re明显下降;富稀土相结构形态发生明显变化,由热处理前的非晶态变为热处理后的晶态。  相似文献   

9.
采用双合金法将两种粉末混合制备烧结永磁体可提高磁体磁性能;但在烧结过程中两种粉末之间存在元素扩散,元素扩散对磁性能的影响程度需要进一步研究。本文将Nd13Fe81B6和TbHx粉末混合制备烧结磁体,Nd13Fe81B6磁体矫顽力为4.5 kOe。当TbHx混合量为3 wt.%,烧结磁体的矫顽力增加至20.0 kOe。通过热激活研究认为,磁畴壁的形核是反磁化需要经过的过程。由于热力学的原因Tb元素更容易扩散进入Nd2Fe14B主相而不是富集在晶间富稀土相。Tb元素进入主相替代Nd可形成具有更高各向异性场的(Nd,Tb)-Fe-B表层,在反磁化过程中晶粒表层磁畴壁的形核场会增加,因此矫顽力增加程度显著。但是,TbHx混合量超过5 wt.%,矫顽力增加幅度降低。对于TbHx混合量7 wt.%的磁体,元素分布显示在主相晶粒内部贫Tb区域明显增少,证实在烧结过程中更多Tb原子从晶粒表层扩散入晶粒内部,这样晶粒表层反磁化形核场的提高程度会减弱,因而磁体矫顽力增加幅度降低。本研究说明要提高双合金Nd-Fe-B磁体磁性能需进一步控制元素扩散并优化磁体的元素分布。  相似文献   

10.
The microstructure of an explosively compacted Nd-Fe-B permanent magnet(Nd-Fe-B) was investigated by means of TEM and XRD. It is shown that there are three kinds of phases: Nd2 Fe14 B matrix phase, O-rich phases and Nd-rich phase with different structures and compositions in the magnet. The hard magnetic phase Nd2Fe14 B is tetragonal, which lattice parameters are determined to be a=0.88 nm and c=1.22 nm. The O-rich phase locates at the grain boundaries and the triple junctions has fcc structure whose lattice parameter is a=0. 559 nm. A dislocation is observed in this phase. It is also found that a large number of the block-shaped Nd-rich phases with hcp structure are embedded in the Nd2 Fe14 B matrix or at grain boundary. Their lattice parameters are determined to be a= 0. 395 nm and c=0. 628 nm.  相似文献   

11.
反位缺陷是金属间化合物中的本征点缺陷,它对材料的力学性能、物理性能、化学性能都有重要的影响,在某些情况下成为决定性能的关键结构要素。首先评述了反位缺陷研究理论,基于量子力学的第一性原理方法、EAM法研究结构材料反位缺陷侧重缺陷的物理和化学原理,基于Ginzburg-Landau方程的微观相场法侧重缺陷微结构演化的动态过程。然后,作者通过图解反位缺陷与传输机制之间的关系说明反位缺陷对高温结构材料的积极贡献以及对性能的危害。最后,作者通过评述常见的L12结构和B2结构反位缺陷及第三组元择优占位的研究进展,归纳了结构材料反位缺陷研究存在的问题。  相似文献   

12.
提出了一种新的雾化喷涂沉积(SCD)方法,在Nd-Fe-B磁体表面均匀沉积TbF3粉末,同时通过晶界扩散过程(GBDP)将Tb元素引入到磁体中。用这种方法(SCD+GBDP)处理厚度达5 mm的钕铁硼磁体。研究了TbF3涂层增重比、扩散时间和扩散温度对烧结磁体组织和磁性能的影响。样品扩散温度和时间为940 ℃和10 h,退火温度和时间为480 ℃和5 h。TbF3增重比(w)从0%增加到0.8%时,磁体的矫顽力从1201 kA/m 提高到1930 kA/m,剩磁下降约0.01 T。研究发现,随着TbF3增重比的增加,磁体的矫顽力先增大后减小。SEM结果表明,在Nd2Fe14B晶粒边界区域,Tb取代Nd形成(Nd, Tb)2Fe14B核壳相。晶界相和核壳相中较高的磁晶各向异性对矫顽力的增强有积极的促进作用。核壳相的分布和浓度对矫顽力有密切的影响。当TbF3增重比大于2.4%时,靠近磁体表面区域的晶界扩散明显增强。元素的SEM图像显示,进入磁体的Tb越多,晶核内的Tb浓度就越高。此外,大量Nd-F/Nd-O-F相的形成导致晶界相不像w=0.8% 时的样品那样连续,这可能是导致矫顽力下降的主要原因。  相似文献   

13.
The effect of post-sinter tempering on the DyF3-diffusion processed Nd-Fe-B was investigated using two kinds of starting magnets. The increase of coercivity after diffusion process using as-sintered magnet was higher than that using two-stage tempered magnet. The grain boundary phase of the tempered magnet became discontinuous upon further annealing at the temperature of diffusion process. This clearly indicates that a continuous grain boundary phase is helpful to the DyF3-diffusion process. When sufficiently diffused, there is no enrichment of Dy in the grain boundary phase. The excess Nd as a result of Dy substitution in the Nd2Fe14B matrix phase forms Nd-O phase at grain boundary and on the surface of the magnet. The increase of coercivity can be related to the (Nd,Dy)2Fe14B grains as well as to the improved decoupling by the grain boundary phase.  相似文献   

14.
采用快淬、热处理及模压成形工艺,制备了成分为Nd10.5Fe78.4-xCo5ZrxB6.1(x=0,1.0,1.5,2.0,2.5)的5种粘结永磁体。采用XRD,DTA,TEM等方法对合金的组织结构和晶化行为进行了研究。结果表明:Zr含量的增加可提高材料的非晶形成能力;当Zr添加到一定量时,形成高熔点的Fe2Zr相,产生细化晶粒的作用;添加Zr元素显著地提高了合金的矫顽力,改善了退磁曲线矩形度,从而提高了最大磁能积。Nd10.5Fe78.4-xCo5ZrxB6.1永磁体在x=2时获得最佳磁性能,Br=0.659T,Hcj=628kA/m,Hcb=419kA/m,(BH)m=73kJ/m^3。  相似文献   

15.
In this paper, the grain boundary diffusion process(GBDP) using a Dy_(70)Cu_(30)(at.%) alloy as the diffusion source was performed in a commercial sintered Nd–Fe–B magnet, and the effect of heat treatment time on the microstructure and magnetic properties of the magnet was investigated in detail. For the processed magnets heat-treated at 860℃, as heat treatment time increased, the coercivity and the depth of(Nd,Dy)_2Fe_(14)B core–shell structure increased first and then decreased. However, when the heat treatment time was more than 2 h, the diffusion path of Dy from the Dy-rich shell phase into the Nd_2Fe_(14)B grains was revealed, and a nearly homogeneous(Nd,Dy)_2Fe_(14)B phase was formed, which brought on the decrease in both the depth of visible core–shell structure and the coercivity of Nd–Fe–B magnet.  相似文献   

16.
利用白云鄂博共伴生混合稀土(MM)制备了成分为(Pr Nd)14-x MMx Fe80.4B5.6的稀土永磁材料,MM替代30%Pr Nd合金,磁体磁能积为238.08 k J/m3,剩磁为1.18 T,矫顽力726.75 k A/m,发现La、Ce元素以氧化物的形式分布在富稀土相中,主相中存在(Nd Ce)2Fe14B固溶体,相比单独添加La、Ce的磁体,获得相同的磁性能时,(Pr Nd)14-x MMx Fe80.4B5.6磁体的La含量较高,磁体中混合稀土La、Ce、Pr、Nd的协同作用促进了MM的高效利用。利用高场动态磁畴显微镜观察了磁体的畴结构动态变化,磁体内部出现大量的穿晶畴,穿晶畴的畴壁可穿过晶界,磁化过程中磁畴扩展容易。  相似文献   

17.
The microstructure of platelike Nd-Fe-B alloys prepared by rapid quenching from the melt, namely, by the strip casting technique, has been studied. The processes of grain refinement, texture formation, and sintering were optimized. It is shown that the maximum energy product (BH)max ≥ 50 MGOe can be realized in sintered magnets prepared from the alloy with 29 wt % Nd after a two-step heat treatment. The oxygen content in such magnets does not exceed 0.3 wt %; the degree of texture is αt = 0.95.  相似文献   

18.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

19.
添加稀土氢化物对烧结Nd-Fe-B磁体强度的影响   总被引:1,自引:0,他引:1  
研究了添加镨氢化物对烧结Nd-Fe-B磁体磁性能、微观结构和抗弯强度的影响。结果表明:添加镨氢化物可以有效提高磁体的抗弯强度,同时对磁体的矫顽力有一定提高。SEM微观形貌观察表明:添加镨氢化物可有效改善磁体的微观结构。有效提高了主相晶粒原子间扩散速度,从而改变了磁体的微观结构和提高了烧结磁体的抗弯强度。  相似文献   

20.
设计成分为Nd32.5B1.04Febal(质量分数,%),经过熔炼,制粉,成型,烧结后制备了烧结NdFeB磁体,对样品的铸锭,烧结态样品以及高温回火态样品,低温回火态样品的微观组织采用SEM进行了仔细地分析。结果显示,烧结NdFeB磁体的相具有"继承性",在熔炼中产生的α-Fe相会被烧结回火后的磁体继承下去,而烧结中形成的Nd2Fe14B相和B-rich相在回火后数量和形态基本上变化不大,Nd-rich相虽然数量变化也不大,但是在高温回火中熔化流动,均匀分布在主相Nd2Fe14B周围,把主相Nd2Fe14B一个个分隔开来,在低温回火中,这种流动会延续,相的形态会得到巩固,使得磁体最终获得良好的综合磁性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号