首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry.  相似文献   

2.
An elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a typical McKee-Farrar metal-on-metal hip prosthesis under a simple steady state rotation. The finite element method was used initially to investigate the effect of the cement and bone on the predicted contact pressure distribution between the two articulating surfaces under dry conditions, and subsequently to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. Both Reynolds equation and the elasticity equation were coupled and solved numerically using the finite difference method. Important features in reducing contact stresses and promoting fluid-film lubrication associated with the McKee-Farrar metal-on-metal hip implant were identified as the large femoral head and the thin acetabular cup. For the typical McKee-Farrar metal-on-metal hip prosthesis considered under typical walking conditions, an increase in the femoral head radius from 14 to 17.4 mm (for a fixed radial clearance of 79 microm) was shown to result in a 25 per cent decrease in the maximum dry contact pressure and a 60 per cent increase in the predicted minimum film thickness. Furthermore, the predicted maximum contact pressure considering both the cement and the bone was found to be decreased by about 80 per cent, while the minimum film thickness was predicted to be increased by 50 per cent. Despite a significant increase in the predicted minimum lubricating film thickness due to the large femoral head and the thin acetabular cup, a mixed lubrication regime was predicted for the McKee-Farrar metal-on-metal hip implant under estimated in vivo steady state walking conditions, depending on the surface roughness of the bearing surfaces. This clearly demonstrated the important influences of the material, design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses. Furthermore, in the present contact mechanics analysis, the significant increase in the elasticity due to the relatively thin acetabular cup was not found to cause equatorial contact and gripping of the ball.  相似文献   

3.
The elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a 28 mm diameter metal-on-metal hip prosthesis employing a metallic cup with an ultra-high molecular weight polyethylene (UHMWPE) backing under a simple steady state rotation representing the flexion/extension during walking. Both Reynolds and elasticity equations were coupled and solved numerically by the finite difference method. The elastic deformation was determined by means of the fast Fourier transform (FFT) technique using the displacement coefficients obtained from the finite element method. Excellent agreement of the predicted elastic deformation was obtained between the FFT technique and the conventional direct summation method. The number of grid points used in the lubrication analysis was found to be important in predicting accurate film thicknesses, particularly at low viscosities representative of physiological lubricants. The effect of the clearance between the femoral head and the acetabular cup on the predicted lubricant film thickness was shown to be significant, while the effect of load was found to be negligible. Overall, the UHMWPE backing was found not only to reduce the contact pressure as identified in a previous study by the authors (Liu et al., 2003) but also significantly to increase the lubricant film thickness for the 28 mm diameter metal-on-metal hip implant, as compared with a metallic mono-block cup.  相似文献   

4.
Design considerations for cushion form bearings in artificial hip joints.   总被引:1,自引:0,他引:1  
Lubrication mechanisms and contact mechanics have been analysed in a new generation of 'cushion form' bearings for artificial hip joints, which comprise low elastic modulus layers on the articulating surfaces. Comparisons have been made with 'hard' bearings used in existing prostheses and also with the natural hip joint. Lubricating film thicknesses are enhanced by larger contact areas and lower contact pressures. For a fixed contact area, simultaneous changes in layer thickness and radial clearance have been shown to have a small effect on elastohydrodynamic film thickness. Hard bearings designed with the same contact area as the cushion bearings produced a similar film thickness, but lubricant film thickness is not optimized in current designs. The main advantage of using a cushion bearing with low elastic modulus layers was found to be associated with microelastohydrodynamic lubrication. Careful selection of the elastic modulus is important in order to ensure that this lubrication regime was effective. Low elastic modulus layers may also produce local deformations, which enhance squeeze film action. The elastic modulus of the material should not be lower than necessary to produce effective microelastohydrodynamic lubrication, as a further reduction in modulus only increases the strain distribution in the material. A lubricant film thickness of 0.3 microns has been predicted for a cushion hip prosthesis with a femoral head diameter of 32 mm and radius of contact zone of 16 mm, using a 2 mm thick layer with an elastic modulus of 20 MPa.  相似文献   

5.
Finite-element method was employed to study the contact mechanics in metal-on-metal hip resurfacing prostheses, with particular reference to the effects of bone quality, the fixation condition between the acetabular cup and bone, and the clearance between the femoral head and the acetabular cup. Simple finite-element bone models were developed to simulate the contact between the articulating surfaces of the femoral head and the acetabular cup. The stresses within the bone structure were also studied. It was shown that a decrease in the clearance between the acetabular cup and femoral head had the largest effect on reducing the predicted contact-pressure distribution among all the factors considered in this study. It was found that as the clearance was reduced, the influence of the underlying materials, such as bone and cement, became increasingly important. Stress shielding was determined to occur in the bone tissue surrounding the hip resurfacing prosthesis considered in this study. However, the stress-shielding effects predicted were less than those observed in conventional total hip replacements. Both the effects of bone quality (reduction in elastic modulus) and the fixation condition between the cup and the bone were found to have a negligible effect on the predicted contact mechanics at the bearing surface. The loading was found to have a relatively small effect on the predicted maximum contact pressure at the bearing surface; this was attributed to an increase in contact area as the load was increased.  相似文献   

6.
The interference press fit of a metallic one-piece acetabular cup employed for metal-on-metal hip resurfacing procedures was investigated experimentally under laboratory conditions in the present study, in particular regarding the cup deformation. Tests were carried out in cadavers as well as polyurethane foams of various grades with different elastic moduli to represent different cancellous bone qualities. The cadaver test was used to establish the most suitable configuration of the foam model representing realistic support and geometrical conditions at the pelvis. It was found that a spherical cavity, with two identical areas relieved on opposite sides, was capable of creating a two-point pinching action of the ischeal and ilial columns on the cup as the worst-case scenario. Furthermore, the cup deformation produced from such a two-point loading model with a grade 30 foam was similar to that measured from the cadaver test. Therefore, such a protocol was employed in subsequent experimental tests. For a given size of the outside diameter of the cup of 60 mm, the cup deflection was shown to be dependent largely on the cup wall thickness and the diametral interference between cup and prepared cavity at implantation. For a relatively thin cup with a wall thickness between 2.3 mm (equator) and 4 mm (pole) and with a modest nominal diametral interference of 1 mm, which corresponds to an actual interference of approximately 0.5 mm, the maximum diametral cup deflection (at the rim) was around 60 microm, compared with a diametral clearance of 80-120 microm between the femoral head and the acetabular cup, generally required for fluid-film lubrication and tribological performances. Stiffening of the cup, by both thickening and lateralizing by 1 mm, reduced the cup deformation to between 30 and 50 microm with actual diametral interferences between 0.5 and 1 mm.  相似文献   

7.
Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should also be revised to consider the relevance of clinic synovial fluid viscosities and to avoid possible misleading results.  相似文献   

8.
The elastohydrodynamic lubrication problem of metal-on-metal hip joint replacements was considered in this study. A simple ball-in-socket configuration was used to represent the hip prosthesis. The Reynolds equation in a spherical coordinate was adopted for the fluid-film lubrication analysis, to account for the ball-in-socket geometry. The corresponding elastic deformation was calculated by means of the finite element method in order to consider the complex ball-in-socket geometry as well as the backing materials underneath the acetabular cup. Both the Reynolds and the elasticity equations were solved simultaneously using the Newton-Raphson finite difference method. The general methodology developed was then applied to a recent experimental prototype metal-on-metal hip implant. It was shown that the backing materials underneath the acetabular cup had little influence on the predicted contact pressure and the elastic deformation at the bearing surfaces for this particular example. Both the film thickness and the hydrodynamic pressure distributions were obtained under various loads up to 2500 N. The predicted minimum lubricating film thickness from the present study was compared with a simple estimation using the Hamrock and Dowson formulae based upon an equivalent ball-on-plane model and excellent agreement was found. However, it was pointed out that for some forms of metal-on-metal hip prostheses with a thin acetabular cup, a polyethylene inlay underneath a metallic bearing insert or a taper connection between a bearing insert and a fixation shell, the general methodology developed in the present study should be used and this will be considered in future studies.  相似文献   

9.
Wear of the bearing surface increases the revision rate of artificial hip replacements and is influenced by the radial clearances between the acetabulum cup and the femoral head. The objective of this article is to determine the effect of various radial clearance values over the contact pressure and wear of the hard-on-hard—that is, polycrystalline diamond (PCD)—hip prostheses using finite element concepts for normal walking conditions. The wear of the hip bearing surface is determined by considering the contact pressures obtained from the hip gait instants of normal walking activity and sliding distance determined from the three-dimensional hip gait motions. The radial clearance value of 0.05 mm showed less volumetric wear rate when compared with other radial clearance values. Overall, it is recommended that the low radial clearance between the contacting pair is suitable for PCD-on-PCD hip prostheses.  相似文献   

10.
The deformation of metallic acetabular cups employed for metal-on-metal hip resurfacing procedures was considered theoretically using the finite element method in the present study, following on the experimental investigation reported in Part 1. Three representative cups, characterized by the cup wall thickness as thin, intermediate, and thick, were considered. For the intermediate cup, the effects of both the size and the diametral interference on the cup deformation were investigated. Both two-dimensional axisymmetric and three-dimensional finite element models were developed to examine the important parameters during and after the press-fit procedure, and in particular the deformation of the metallic cup. The theoretical prediction of the cup deformation was in reasonable agreement with the corresponding experimental measurement reported in Part 1. The most significant factor influencing the cup deformation was the cup wall thickness. Both the size and the diametral interference were also shown to influence the cup deformation. It is important to ensure that the cup deformation does not significantly affect the clearance designed and optimized for tribological performances of metal-on-metal hip resurfacing prostheses. Furthermore the contact parameters at the cup and bone interface associated with the press fit were also discussed.  相似文献   

11.
Metal-on-metal hip joint tribology   总被引:3,自引:0,他引:3  
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.  相似文献   

12.
The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 microm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.  相似文献   

13.
Elastohydrodynamic lubrication was analysed under squeeze-film or normal approach motion for artificial hip joint replacements consisting of an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup and a metallic or ceramic femoral head. A simple ball-in-socket configuration was adopted to represent the hip prosthesis for the lubrication analysis. Both the Reynolds equation and the elasticity equations were solved simultaneously for the lubricant film thickness and hydrodynamic pressure distribution as a function of the squeeze-film time was solved using the Newton-Raphson method. The elastic deformation of the UHMWPE cup was calculated by both the finite element method and a simple equation based upon the constrained column model. Good agreement of the predicted film thickness and pressure distribution was found between these two methods. A simple analytical method based upon the Grubin-Ertel-type approximation developed by Higginson in 1978 [1] was also applied to the present squeeze-film lubrication problem. The predicted squeeze-film thickness from this simple method was found to be remarkably close to that from the full numerical solution. The main design parameters were the femoral head radius, the radial clearance between the femoral head and the acetabular cup, and the thickness and elastic modulus for the UHMWPE cup; the effects of these parameters on the squeeze-film thickness generated in current hip prostheses were investigated.  相似文献   

14.
Total joint replacements (TJRs) have a limited lifetime, but the introduction of components that exhibit good lubricating properties with low friction and low wear could extend the life of TJRs. A novel acetabular cup design using polyurethane (PU) as a compliant layer (to mimic the natural joint) has been developed. This study describes a series of friction tests that have been used to select the most appropriate material, optimize the design parameters, and fine-tune the manufacturing processes of these joints. To determine accurately the mode of lubrication under which these joints operate, a synthetic lubricant was used in all these tests. Friction tests were carried out to assess the lubrication of four PU bearing materials. Corethane 80A was the preferred material and was subjected to subsequent testing. Friction tests conducted on acetabular cups, manufactured using Corethane 80A articulating against standard, commercially available femoral heads, demonstrated friction factors approaching those for full-fluid-film lubrication with only approximately 1 per cent asperity contact. As the joint produces these low friction factors within less than half a walking cycle after prolonged periods of loading, start-up friction was not considered to be a critical factor. Cups performed well across the full range of femoral head sizes, but a number of samples manufactured with reduced radial clearances performed with higher than expected friction. This was caused by the femoral head being gripped around the equator by the low clearance cup. To avoid this, the cup design was modified by increasing the flare at the rim. In addition to this the radial clearance was increased. As the material is incompressible, a radial clearance of 0.08 mm was too small for a cup diameter of 32 mm. A clearance of between 0.10 and 0.25 mm produced a performance approaching full-fluid-film lubrication. This series of tests acted as a step towards the optimization of the design of these joints, which has now led to an in vivo ovine model.  相似文献   

15.
A fully coupled contact and wear model was developed in the present study for hip implants employing an ultra-high molecular weight polyethylene (UHMWPE) cup in combination with a metallic or ceramic femoral head. A simple elasticity equation based on the concept of constrained column model was employed to solve the contact mechanics between the acetabular cup and the femoral head under the three-dimensional physiological loading condition. The wear model was based on the classical Archard-Lancaster equation in common with all other studies reported in the literature. The fully coupled contact and wear model was applied to both conventional and cross-linked UHMWPE cups under a wide range of design parameters such as the clearance and the femoral head radius. The predicted linear and volumetric wear as well as their rates for conventional UHMWPE cups were found to be in good agreement with those obtained from a similar analysis by Maxian but using the finite element method for the contact mechanics analysis. The predicted maximum contact pressure was found to decrease rapidly within the first 10(6) cycles, and below the limit to cause plastic deformation within the UHMWPE cup with a nominal radial clearance of 0.2 mm. The effect of the clearance between the head and the cup on the predicted wear was found to be negligible. For the cross-linked UHMWPE cup with relatively large diameters up to 48 mm and a fixed outside diameter of 50 mm, the predicted wear, which was found to increase with increasing femoral head radius, remained small owing to the small wear factor associated with these materials. Furthermore, if the head diameter increases beyond 42 mm, a rapid increase in the contact pressure was predicted, owing to the decrease in the wall thickness of the cross-linked UHMWPE cup.  相似文献   

16.
The wear generation of double-heat-treated and as-cast large-diameter metal-on-metal (MOM) hip bearings was investigated using standard- and 'severe'-gait simulations. The test hypothesis was that double heat treatment would change MOM hip wear compared with the as-cast condition. Two groups of high-carbon MOM bearings of 40 mm diameter were manufactured and subjected to either hot isostatic pressing (HIP) and solution annealing (SA) or no heat treatment (as cast). The results showed no statistical difference between the two groups under both running-in and steady state conditions. Even under the most 'severe'-gait simulation published to date, the mean volumetric wear rates were 2.9 and 3.9 mm3 per 10(6) cycles for the HIP-SA and as-cast bearings respectively, showing a ten-fold increase in wear compared with walking. These differences were not statistically different; therefore our hypothesis was negated. Changes in alloy microstructure do not appear to influence the wear behaviour of high-carbon cast MOM articulations with similar chemical compositions. This is in sharp contrast with the published significance of bearing diameter and radial clearance on the wear of MOM hip bearings.  相似文献   

17.
A full fluid ball-in-socket elastohydrodynamic lubrication (EHL) analysis of an artificial hip joint made of a metallic femoral head and ultra-high molecular weight polyethylene (UHMWPE) acetabular cup was considered. Since artificial hips operate in a mixed lubrication mode, wear occurs and wear particles lead to reduced hip lifetimes. This study involves simulating these particles within the lubrication regime. Hip deformation was compared to models employing finite element analysis and the spherical fast-Fourier transform technique. Particle modeling results were compared to suspension modeling experiments by other researchers. Results show a strong influence of lubricant fluid velocity on that of the wear particles.  相似文献   

18.
Metal-on-metal (MoM) hip replacements are commonly used hip implants. However, one of the issues under debate is the interference of friction and wear. The purpose of this feasibility study is to elucidate the performance of palm lubrication between the femoral head and the acetabular cup. In the tribology of hip implants, the use of palm olein, palm kernel oil, and palm fatty acid distillate as synthetic lubricants for human joints has shown tremendous potential. A modified pin-on-disc as hip screening has been used to evaluate the friction and wear on an acetabular cup with an inner diameter of 28 mm. The wear debris was then observed with microscopy image analysis. This study revealed that the physical and unique chemical properties in palm oil can optimize the rate of friction and wear on the metal acetabular cup and thus allow for a stable implant of MoM.  相似文献   

19.
This paper presents an analytical model of the cobalt-based alloy-ultra-high molecular weight polyethylene (UHMWPE) wear coupling. Based on a previous model in which the cup wear volume over a gait cycle (WG) was calculated under the simplifying assumption of an ideal rigid coupling, the current version proposes a more realistic wear simulation. All three components of the hip loading force were considered for the contact pressure calculation and all three components of the hip motion were taken into account for the sliding distance calculation. The contact pressure distribution was calculated on the basis of the Hertzian theory for the elastic contact of two bodies with non-conforming geometrical shapes. The wear factor was taken from hip simulator wear tests. The calculated WG is 67 x 10(-6) mm3 for a standard reference patient. The parametric model simulations show that WG increases linearly with the patient weight, femoral head diameter and surface roughness. It increases non-linearly to a maximum and decreases to an asymptotic value with increasing cup/head clearance and with cup isotropic elastic modulus. The cup orientation in the pelvis affects only slightly the total amount of WG whereas it is the dominant factor affecting the shape of the wear distribution. The iso-wear maps show paracentral patterns at low cup inclination angles and marginal patterns at higher inclination angles. The maximum wear depth is supero-posterior when the cup is in neutral alignment and supero-anterior at increasing anteversion angles. Complex patterns with a combination of paracentral and marginal wear were obtained at specific clearance values and cup orientations. The results of the simulations are discussed in relation to the wear distribution measured on the articular surface of 12 UHMWPE components retrieved from failed hip joint prostheses, after a period of in situ functioning.  相似文献   

20.
Ceramic-on-metal (CoM) total hip replacements have shown reduced wear and friction. Lubrication and contact mechanics analyses play an important role in providing an overall understanding for the tribological performance of CoM bearings. In the present study, the steady-state contact mechanics and elastohydrodynamic lubrication (EHL) and transient EHL of CoM bearings were analyzed. The dry and lubricated contact pressures of CoM bearings showed typical characteristics of hard-on-hard hip bearings. The effects of head radius and radial clearance on the lubrication performance were predicted. CoC and CoM bearings are more likely to benefit full fluid film lubrication than MoM bearings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号