首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the effect of temperature and the sludge age on the performance of a moving bed sequencing batch biofilm reactor (MBSBBR) for COD removal and nitrification. The experiments are conducted in a lab-scale MBSBBR operated at three different temperatures (20, 15 and 10 degrees C) with a synthetic feed simulating domestic sewage characteristics. Evaluation of the results revealed that removal of organic matter at high rates and with efficiencies over 90% was secured at all operation conditions applied. The nitrification rate was significantly influenced by changes in temperature but complete nitrification occurred at each temperature. The nitrification rates observed at 20 and 15 degrees C were very close (0.241 mg NO(x)-N/m2d, 0.252 mg NO(x)-N/m2 d, respectively), but at 10 degrees C, it decreased to 0.178 mg NO(x)-N/m2d. On the other hand, the biomass concentration and sludge age increased while the VSS/TSS ratios that can be accepted as an indicator of active biomass fraction decreased with time. It is considered that, increasing biofilm thickness and diffusion limitation affected the treatment efficiency, especially nitrification rate, negatively.  相似文献   

2.
The objective of this study was to develop an integrated nitrogen treatment system using autotrophic organisms. A treatment system consists of an aerobic hollow-fiber membrane biofilm reactor (HfMBR) and anaerobic HfMBR. In the aerobic HfMBR, a mixture gas of air and O2 was supplied through the fibers for nitrification. Denitrification occurred in the anaerobic HfMBR using H2 as the electron donor. The treatment system was continuously operated for 190 days. NH4-N removal efficiencies ranging from 95% to 97% were achieved at NH4-N concentrations of influent ranging from 50 to 100 mg N/L. When glucose was added to the influent, the simultaneous nitrification and denitrification occurred in the aerobic HfMBR, and nitrogen removal rates were changed according to the COD/NH4-N ratio of influent. In the anaerobic HfMBR, autotrophic denitrification using H2 occurred and the removal rates achieved in this study were 23-58 mg N/m2 d. In this study, the achieved removal efficiency was lower than other study findings; however, the result suggested that this hybrid HfMBR system can be used effectively for nitrogen removal in oligotrophic water.  相似文献   

3.
The use of fusel oil as an 'alternative' carbon source for denitrification in the mainstream and sidestream treatment processes was studied. Research comprised two kinds of batch experiments as well as acclimation of process biomass to external carbon sources. In the conventional nitrate utilization rate (NUR) measurements (one-phase experiments with non-acclimated biomass), the NUR with fusel oil was 1.4-1.7 g N/(kg VSS·h which was comparable to NUR with ethanol and with slowly biodegradable fraction of the settled wastewater. When fusel oil was added at the beginning of the anoxic phase, preceded by an anaerobic phase (in two-phase experiments with non-acclimated biomass), the NURs of 2.5-2.9 g N/(kg VSS·h) were comparable to the tests without the addition of any external carbon sources. The addition of fusel oil and ethanol resulted in a significant enhancement of the denitrification efficiency in lab-scale sequencing batch reactors treating sludge reject water. The NURs continuously increased from below 1 g N/(kg VSS·h) to over 10 g N/(kg VSS·h) over the entire 4-week operational period, indicating gradual acclimation to the substrate. The overall total N removal efficiency reached ~90%.  相似文献   

4.
Integrated presentation of total emissions on catchment scale is prerequisite for many tasks in integrated management of point and diffuse sources of pollution. This paper will focus on emissions of nutrients from municipal point sources. Based on calculations of discharges of N, P from households into wastewater and on the detailed evaluation of data from 76 municipal wastewater treatments plants, this paper presents ranges of specific loads of inhabitants and population equivalents in the raw wastewater. In addition data of these treatment plants have been evaluated in respect of the treatment efficiency for nitrogen and phosphorus (average reduction rates) dependent on the design characteristic (with or without nitrification, denitrification or enhanced phosphorus removal). The results of the investigation show that the specific N and P loads from households in Austria lie within the range 1.6-2.0 g P/(inhabitant.d) and 11- 13 g N/(inhabitant.d). The specific contribution of industries to municipal wastewater varies between 0.3 and 2.0 gP/(pe.d) and 0 and 13 g N/(pe.d) with average values of 1.3 g P/(pe.d) and 6.5 g N/(population equivalent (pe)/d). As average values for municipal wastewater (contributions from household and industry) this leads to specific influent loads of 1.5 g P/(pe.d) and 8.8 g N/(pe.d). Average treatment efficiencies of treatment plants are for instance 50% nitrogen removal in treatment plants with nitrification and 80% in treatment plants with nitrification/denitrification. For phosphorus a removal of about 85% can be expected where the treatment plant was designed for enhanced phosphorus removal. Finally a method for load estimations based on standard values as mentioned above was tested for the estimation of emission from municipal point sources of selected regions.  相似文献   

5.
The effects of sequentially combined carbon (SCC) using a symbiotic relationship of methanol and acetic acid on biological nutrient removal were investigated in both the continuous bench scale process consisting of an anoxic, an aerobic and a final settling tank and intensive batch tests. Compared to the use of respective sole carbon sources, methanol and acetic acid, the use of SCC showed superior removal efficiency of nitrogen (98.3%) and phosphorus (approximately 100%). Furthermore, the use of SCC enhanced simultaneous denitrification and phosphorus uptake by denitrifying phosphorus removal bacteria (DPB), resulting in the highest specific denitrification rate (SDNR) of 0.252 g NO3-N/g VSS/d achieved from the first anoxic zone with methanol of 30 mg COD/I. From batch tests performed under carbon limited anoxic conditions, 1 g of nitrate was used by DPB for P-uptake of 1.19 g. According to this result, 0.205 g NO3-N/g VSS/d was accomplished by normal denitrifiers using methanol, and 0.047 g NO3-N/g VSS/d was achieved by DPB. This research also demonstrated that the increase of poly-beta-hydroxybutyrate (PHB) stored by phosphorus accumulating organisms (PAOs) could be of importance in improving aerobic denitrification. The use of SCC produced the highest P-release in the anoxic zone, indicating the amount of PHB would be higher compared to the use of other sole carbons. Therefore, the SCC could be a very effective carbon source for the enhancement of aerobic denitrification as well.  相似文献   

6.
The feasibility of combining a previously reported storage driven denitrification biofilm, where 80% of influent acetate can be converted to poly-beta-hydroxybutyrate (PHB), with a suitable nitrification reactor, either submerged or trickling filter design, to achieve complete biological nitrogen removal was tested. The reactor system showed the potential of complete biological nitrogen removal of waste streams with a C/N ratio as low as 3.93 kg COD/kg N-NH3 at an overall nitrogen removal rate of 1.1 mmole NH3/L/h. While the efficiency and the rates of nitrogen removal were higher than what is observed in traditional or simultaneous nitrification and denitrification (SND) systems, there were two problems that require further development: (a) the incomplete draining of the reactor caused ammonia retention and release in the effluent, limiting the overall N-removal and (b) pH drifts in the nitrification step slowed down the rate of nitrification if not corrected by appropriate pH adjustment or buffering.  相似文献   

7.
利用生态浮床系统,在室内研究了浮床植物单作和混作对氮的去除效果及其根际周围硝化与反硝化菌种群数量以及硝化与反硝化作用速率的变化规律.结果表明,浮床植物混作系统对氮的去除效果优于植物单作和无植物系统,而植物系统又优于无植物系统;植物单作与混作根际硝化细菌种群数量和硝化作用速率、反硝化细菌种群数量和反硝化作用速率均具有明显的差异;处理15 d后,硝化细菌种群数量在水芹系统中的减少较比豆瓣菜和混作系统多,硝化作用速率在水芹系统中的降低较豆瓣菜和混作系统明显(P <0.05);反硝化细菌种群数量由多到少的顺序分别为水芹系统,豆瓣菜系统,混作系统,无植物系统;且反硝化作用速率由高到低的顺序分别为水芹系统,豆瓣菜系统,混作系统,无植物系统.  相似文献   

8.
A two-stage entrapped mixed microbial cell ((2S)EMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80% of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99%. The effluent TSS of less than 25 mg/L in the (2S)EMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6%) and nitrogen (average 80.5%) in the (2S)EMMC process with 3 times of recirculation ratio.  相似文献   

9.
Nitrogen removal from a piggery wastewater was investigated in a post-denitrification modified Lüdzack Ettinger (PDMLE) process. Overall hydraulic retention time (HRT) of the PDMLE, consisting of contact/separator (C/S), nitrification, denitrification and re-aerobic bioreactor was 10 days. 60% of the influent SCOD was separated in the C/S by contacting the return sludge with the synthetic wastewater, however, only 10% of the influent SCOD was separated from the piggery wastewater. Biosorption capacities of the synthetic wastewater and piggery wastewater were 800 and 150 mg/g-MLSS, respectively. In spite of the high organic and nitrogen load, nitrification efficiency was above 95%, and nitrification rate was about 180 mg-NH4+-N/L x day. The removed delta COD/delta nitrate ratios in the denitrification tank were 4.0 and 11.5 g-SCOD/g-nitrate, while denitrification rates were 8.4 and 2.6 mg-nitrate/day for synthetic and piggery wastewater, respectively. In the proposed PDMLE process, both bio-sorbed and bypassed organic matter could be successfully used for nitrate reduction as carbon sources and the final TN removal efficiency was as high as 95%.  相似文献   

10.
Use of biopolymers as solid substrates for denitrification   总被引:2,自引:0,他引:2  
The conventional process to remove nitrate from water, the biological denitrification, uses the addition of dissolved organic carbon that has the potential risk to further deteriorate water quality. Thus, this work aimed to evaluate the specific denitrification activity of a mixed microbial culture and a pure culture of Pseudomonas stutzeri with solid substrates such as polycaprolactone (PCL), polylactic acid (PLA), and starch. The highest nitrate reduction activity was obtained with a microbial mixed culture using starch, 104 mg N(2)-N/(g VSS.d), and PCL, 97 mg N(2)-N/(g VSS.d), followed by PLA, 53 mg N(2)-N/(g VSS.d). A considerable advantage of using biopolymers in water denitrification is the reduced risk of contaminating the water with soluble biodegradable organic carbon.  相似文献   

11.
Nitrogen removal efficiency of a pilot-scale system consisted of Modified Ludzack-Ettinger (MLE) followed by sulfur-utilizing denitrification (SUDNR) process was evaluated with a landfill leachate. For SUDNR, a down-flow mode sulfur packed bed reactor (SPBR) filled with sulfur and limestone particles was used. Although total nitrogen removal efficiency of the MLE process was about 80% at the recycle ratio of 4, effluent contained 350-450 mg/L NO(3-)-N. Up to a loading rate of 1.2 kg NO(3-)-N/m3-day, the SPBR could achieve complete removal of nitrate, and nitrate removal rate was kept to that level even at higher loading rate. When a COD/N ratio of MLE process was maintained at 2 instead of 4, more organics with molecular weight less than 500 were utilized for heterotrophic denitrification although denitrification was not complete with the lack of electron donors. Clogging in the SPBR, mainly by the accumulation of nitrogen gas in the pores, could easily be removed by introducing the effluent in an upward direction for 1 min at 1 hr intervals. The proposed treatment system could achieve nitrate free effluent with a slight increase in chemical cost. Furthermore, depending on further COD removal requirement after biological treatment, the proposed treatment system can be an economical solution.  相似文献   

12.
In this study, by-products from alcohol production were examined in terms of their potential application as external carbon sources for enhancing denitrification in biological nutrient removal systems. Three types of batch tests were used to compare the effects of the distillery by-products, such as fusel oil, syrup and reject water, on the non-acclimated activated sludge. Much higher nitrate utilization rates (NURs) were observed for the latter two carbon sources. In the conventional NUR measurements (one-phase experiments), the observed NURs with syrup and reject water were 3.2-3.3 g N/(kg VSS h) compared with 1.0 g N/(kg VSS h) obtained for fusel oils from two different distilleries. When the carbon sources were added at the beginning of the anoxic phase preceded by an anaerobic phase (two-phase experiments), the NURs were 4.2 g N/(kg VSS h) (syrup and reject water) and 2.4-2.7 g N/(kg VSS h) (fusel oils). The heterotrophic yield coefficient, determined based on the conventional OUR measurements, varied in a relatively narrow range (0.72-0.79 g COD/g COD) for all the examined carbon sources. Due to advantageous composition (much higher COD concentrations and COD/N ratios), fusel is a preferred carbon source for practical handling in full-scale wastewater treatment plants.  相似文献   

13.
Traditional nitrification/denitrification is not suitable for nitrogen removal when wastewater contains high concentrations of ammonium nitrogen and low concentrations of biodegradable carbon. Recently, a deammonification process was developed and proposed as a new technology for treatment of such streams. This process relies on a stable interaction between aerobic bacteria Nitrosomonas, that accomplish partial nitritation and anaerobic bacteria Planctomycetales, which conduct the Anammox reaction. Simultaneous performance of these two processes can lead to a complete autotrophic nitrogen removal in one single reactor. The experiments where nitrogen was removed in one reactor were performed at a technical-scale moving-bed pilot plant, filled with Kaldnes rings and supplied with supernatant after dewatering of digested sludge. It was found that a nitrogen removal rate obtained at the pilot plant was 1.9 g m(-2) d(-1). Parallel to the pilot plant run, a series of batch tests were carried out under anoxic and aerobic conditions. Within the batch tests, where the pilot plant's conditions were simulated, removal rates reached up to 3 g N m(-2)d(-1). Moreover, the batch tests with inhibition of Nitrosomonas showed that only the Anammox bacteria (not anoxic removal by Nitrosomonas) are responsible for nitrogen removal.  相似文献   

14.
Pre-denitrification in biofilters is limited by the amount of easily degradable organic substrate, resulting in relatively high requirements for external carbon. The combination of pre-DN, N and post-DN filters is much more advisable for most municipal wastewaters, because the recycle rate can be reduced and external carbon can be saved. For minimum use of external carbon, 100-150% recycle rate should not be exceeded. Then, approximately 50-60% of the total NO3-N can be depleted in the pre-DN stage. On average, 10 g total (t) COD/g NO3-N were required in the pre-DN stage for denitrification in the pilot and full-scale plant and 0.4-0.5 kg NO3-N/(m(3)DN d) can be reached without external carbon. As only 40-70% of the COD load is eliminated in the pre-DN, the remaining COD load is removed in the nitrification stage. 1 kg COD/(m(3) d) suppresses nitrification rates by approximately 0.1 kg NH4-N/(m(3) d). For nitrification rates, > 0.5 kg NH4N/(m(3) d) at 12 degrees C not more than 2 kg COD/(m(3) d) may be eliminated in the nitrification.  相似文献   

15.
The effect of low operating temperature and pollutant concentration on the performance of five anaerobic hybrid reactors was investigated. Stable and efficient long-term (>400 days) treatment of a cold (6-13 degrees C), volatile fatty acid (VFA)-based, wastewater was achieved at applied organic loading rates (OLRs) of 5 kg chemical oxygen demand (COD) m(-3) d(-1) with COD removal efficiencies c. 84% at 6 degrees C (sludge loading rate (SLR) 1.04-1.46 kg COD kg [VSS](-1) d(-1)). VFA-based wastewaters, containing up to 14 g pentachlorophenol (PCP) m(-3) d(-1) or 155 g toluene m(-3) d(-1) were successfully treated at applied OLRs of 5-7 kg COD m(-3) d(-1). Despite transient declines in reactor performance in response to increasing toxicant loading rates, stable operation (COD removal efficiencies > 90%) and satisfactory toxicant removal efficiencies (>88%) were demonstrated by the systems.  相似文献   

16.
In this study, laboratory-scale experiments were conducted applying a Sequencing Batch Reactor (SBR) activated sludge process to a wastewater stream from a pharmaceutical factory. Nitrogen removal can be achieved via partial nitrification and denitrification and the efficiency was above 99% at 23 degrees C+/-1. The experimental results indicated that the nitrite oxidizers were more sensitive than ammonia oxidizers to the free ammonia in the wastewater. The average accumulation rate of nitrite was much higher than that of nitrate. During nitrogen removal via the nitrite pathway, the end of nitrification and denitrification can be exactly decided by monitoring the variation of pH. Consequently, on-line control for nitrogen removal from the pharmaceutical manufacturing wastewater can be achieved and the cost of operation can be reduced.  相似文献   

17.
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.  相似文献   

18.
Nightsoil and piggery wastes generally present high strength organics and nitrogen. This study evaluated the nitrogen removal characteristics with the existing and modified nightsoil and piggery waste treatment plants. The existing conventional plants showed 20 to 40% nitrogen removal, but the modification with SBR or MLE process could remove effectively both nitrogen and organics with the minimum COD/TN and alkalinity/TN ratios of 6 and 3.6, respectively. Nitrite nitrification and denitrification rates obtainable at higher nitrogen loads were faster than the rates of nitrate nitrification and denitrification resulting in less reactor volume requirement. However, the higher nitrogen loads increased the organic loads resulting in the reactor temperature inhibiting nitrification. Thus, a combined treatment with anaerobic digestion with the adjustment of influent bypass rates was proposed to reduce the reactor temperature and the external carbon requirement. The biological treatment could discharge about 1,100 mg/L soluble COD and 50 mg/L soluble nitrogen, respectively.  相似文献   

19.
In this study, with the KNR process that has many advantages, the nitrogen removal efficiency of KNR was experimentally investigated at various COD/N ratios of influent conditions. The optimal operating condition of internal recycle ratio was evaluated. The TN removal efficiencies were 59.1, 72.5 and 75.9% at the COD/N ratios of 3, 5 and 7, respectively. These high removal efficiencies resulted from high denitrification rate in UMBR with high microorganism concentration. Furthermore, specific endogenous denitrification at MLVSS of 10.3 g/L that is similar to MLVSS in UMBR was over two times higher than that at MLVSS of 2.06 g/L. This result suggests that endogenous denitrification rate in UMBR is so high that the requirement of an external carbon source can be saved. As the internal recycle ratio increased from 100 to 400%, the TN removal efficiency also improved from 69.5 to 82.9%, and the optimal internal recycle ratio was 300%.  相似文献   

20.
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC=100 mg/L and sulphate=500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3- -N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号