首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钱豪  刘湉湉  聂仲武  陈曙光 《现代化工》2021,(7):108-112+117
采用电镀和水热反应两步法制备了一种高柔性Ni Te/Ni@CC超级电容器正极材料。利用X射线衍射、扫描电镜、能谱仪和电化学工作站对Ni Te/Ni@CC电极进行了表征与分析。结果表明,该电极具有CC-Ni-Ni Te的层次结构;在电流密度为5 m A/cm2时,电极的面积比电容达到2.85 F/cm2;由该电极组装的Ni Te/Ni@CC//AC/CC全固态柔性超级电容器在5.57 m W/cm2的面功率密度下可提供高达0.50 m W·h/cm2的面能量密度,并且在0~90°的2 000次弯曲循环后,具有77.20%的初始电容保持率。  相似文献   

2.
超级电容器是近年来电化学储能器件研发的热点之一,其电极材料对其性能起决定性作用。为了合成具有优异超电容性能的NiCo基二维层状双氢氧化物(LDH)电极材料,首先通过一步水热法在泡沫镍网表面制备NiCo-LDH纳米阵列;然后在水-乙二醇体系下,通过二次溶剂热反应,制备偏钒酸根掺杂的NiCo-LDH纳米阵列;最后,通过碱转化得到性能优异的电极材料。用此电极与活性碳组装成全固态不对称超级电容器件,在电压为0~1.8 V、功率密度为9 mW/cm2时,器件的能量密度达0.416 mW·h/cm2,且具有良好的循环稳定性。  相似文献   

3.
白明华  李一迪  刘锐  于洲  赵震 《化工进展》2020,39(10):4111-4118
利用简单的水热法制备出不同反应液浓度、不同反应时间以及不同反应温度氧化钴/泡沫镍(CoO/NF)电极,旨在改善氧化钴材料的比电容及稳定性。通过XRD、SEM、TEM、EDS Mapping和BET对其结构和形貌进行了表征,同时在1mol/L氢氧化钾(KOH)电解液中采用循环伏安曲线(CV)、充放电曲线(CP)、循环性能测试、大电流充放电测试以及交流阻抗(EIS)测试研究了其电化学性能。表征结果显示氧化钴均匀地分布在泡沫镍载体表面,且片状结构CoO-8h/NF具有较大的比表面积和多孔特性。在三电极体系中,电化学测试结果显示CoO-8h/NF在1mA/cm2电流密度下表现出最好的电容性能,比电容可以达到930mF/cm2。在10mA/cm2电流密度下对CoO-8h/NF电极进行10000次恒电流充放电测试,循环测试后电极的比电容几乎没有衰减,具有较好的稳定性,是超级电容器比较理想的正极材料。  相似文献   

4.
超级电容器是很有发展潜力的电化学储能器件,其性能主要取决于电极材料。利用水热法,通过改变加入的卤离子(F-、Cl-、Br-)种类,可以简便地对镍钴(NiCo)基超级电容器电极材料的形貌、物相以及化学组成进行调控。由X射线衍射(XRD)和扫描电镜(SEM)等表征结果可知,F- 诱导生成纳米片支撑纳米线阵列,成分为稳定的NiCo LDH结构;Cl-/Br- 诱导生成纳米线,成分为碱式碳酸钴。从电化学测试结果可知,形貌和晶型对电化学性能有显著的影响。其中Cl- 调控的电极在120 ℃下反应3 h时,其形貌为纳米线,晶型偏向无定形,此时性能最优;在2 mA/cm2电流密度下不仅具有最大的面积比电容2 940 mF/cm2,且该电极与负极活性炭组装的器件具有1.8 V的大电压窗口和优异的循环稳定性。  相似文献   

5.
柔性超级电容器具有灵活性高、充放电速度快、功率密度大、绿色环保、安全性高、成本低等优越性能,在可穿戴电子设备领域具有重要的应用价值。纯导电聚合物电极材料的循环稳定性和电化学性能有限,而导电聚合物复合其他导电材料形成的复合电极能改善其循环稳定性和电化学性能。根据近年来不同导电聚合物基柔性超级电容器电极材料的研究进展,介绍了以导电聚合物(聚苯胺、聚吡咯和聚噻吩)基复合材料作为柔性超级电容器电极材料的制备及其性能研究。  相似文献   

6.
以柔性碳纤维(CC)作为基底材料,分别采用化学镀镍、电化学氧化和电化学沉积的方法制备出Yb(OH)3复合Ni(OH)2碳纤维纳米电极材料(Yb(OH)3@Ni(OH)2/CC)。以X射线衍射仪(XRD)测试材料的结构和组成成分;利用场发射扫描电子显微镜(FE-SEM)对材料的微观形貌进行表征;利用线性循环伏安法(CV)、交流阻抗法(EIS)、恒流充放电法(GCD)对材料的电化学性能进行测试研究。实验结果表明,当电流密度为10mA/cm2时,该复合材料的面积比电容高达1216mF/cm2;循环充放电1000次后的容量保持率为90%,比Ni(OH)2/CC材料的容量保持率提高14%。  相似文献   

7.
近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。  相似文献   

8.
铜氧化物由于具有理论容量高和储量丰富等优势成为下一代有前景的超级电容器电极材料,但其电子导电性低和长期循环稳定性差制约实际应用。本文以三明治型Cu30Mn70/Cu/Cu30Mn70箔带为母合金,通过脱合金与自蔓延氧化相结合的技术制备了高导电柔性纳米多孔CuMn@多组元氧化物核-壳复合电极,并探究了不同脱合金条件下Mn残余量对电极形貌、结构和电化学性能的影响。实验结果表明,随着腐蚀时间的延长,Mn的残余量会逐渐变少,而不同腐蚀条件下获得的多组元氧化物均由CuO、Cu2O、CuxMn1-xO和CuMn2O4相组成。腐蚀时间为50min时制备的电极(NP-TMO5)在三电极体系测试中具有最优的电化学性能:5mA/cm2电流密度下,面积比电容为1045.7mF/cm2,且循环12000次后,电容保持率为95.9%。两电极对称体系测试中,3mA/cm  相似文献   

9.
可穿戴和便携式电子设备迫切需要发展透明超级电容器等电化学储能器件。炭化树叶叶脉由连续的碳纤维网络构成,具有非常好的透明性,且兼具导电性好和质量轻的优点。本文以炭化菩提树叶叶脉网络为集流体,通过溶剂热法在其上原位生长了Ni/Co混合金属-有机框架材料(Ni/Co-MOF)。炭化叶脉的连续碳纤维网络有利于电子连续传输及电解液的输运;Ni/Co-MOF中混合金属中心有利于提供更多的电化学位点存储电荷。所制备的炭化叶脉网络@Ni/Co-MOF透明电极在1mA/cm2电流密度下表现出1.15F/cm2的高面积容量,经过1000次循环后,容量保持率为105.4%,仍具有良好的循环稳定性。以炭化叶脉网络@Ni/Co-MOF和炭化叶脉网络@活性炭组装成非对称透明超级电容器,在1.6V的大电势窗口、1mA/cm2的电流密度下,得到的面积容量为0.47F/cm2、面积能量密度为0.61W·h/cm2;并具有良好的循环稳定性,在循环300圈后,容量保持率为93.6%。炭化叶脉网络@MOF材料的方法将为制备透明功能器件如传感器、光电器件、太阳电池和锂离子电池等应用提供了新途径。  相似文献   

10.
徐舟  侯程  王诗琴  王佳其  庄严  贾海浪  关明云 《化工进展》2020,39(10):4088-4094
以Ni(NO3)2为原料、NaOH为沉淀剂和羟基化碳纳米管(CNT)为基质首先制备了Ni(OH)2/CNT复合材料, 然后将其于一定温度下煅烧,使其转变为NiO/CNT复合材料。用X射线粉末衍射仪(XRD)、场发射电子显微镜(FESEM)和透射电子显微镜(TEM)表征了样品的晶相与形貌,结果表明NiO纳米粒子紧密锚附在碳纳米管表面。复合材料可能的形成机理被提出。采用循环伏安法(CV)、单电极充放电和电化学阻抗研究了反应条件对其电化学性能的影响,确定最佳制备条件。将复合材料正极、活性炭负极和PVA-KOH电解质膜组装成准固态不对称超级电容器,电化学性能测试结果表明,在充放电电流密度11.2mA/cm2下,其比电容达到868.0F/g并保持稳定循环3700圈。7500次循环后,其比电容值仍有564.2F/g,显示出高的比电容和长的循环稳定性。  相似文献   

11.
为满足超级电容器对于高性能电极材料的需求,本研究采用水热和电沉积结合的方法,在泡沫镍上合成了具有独特三维(3D)核壳结构的纳米针/纳米片核壳阵列(3D NDNSA)的过渡金属氧化物和硫化物复合赝电容电极材料Mn-Ni-Co-O@Ni-Mn-S(MNCO@NMS)。SEM和TEM分析结果表明,一维MNCO纳米针为核心和二维NMS纳米片为壳层,相互连接并交织形成分层的3D核壳纳米结构的MNCO@NMS。由于过渡金属氧化物和硫化物的协同作用和分层核壳结构带来的导电性和活性位点的增加,制得的3D MNCO@NMS表现出了优异的电化学性能。在3 mol·L-1 KOH作为电解质的三电极电化学测试系统中,MNCO@NMS电极在电流密度1 A·g-1下比电容为 2 574.2 F·g-1;在电流密度 10 A·g-1下循环5 000次后,表现出接近100%的库伦效率和83.4%的比电容保持率。此外,以制得的MNCO@NMS为正极,活性炭为负极组装的混合超级电容器器件(HSCs)在功率密度799 W·kg-1下的能量密度为54.4 Wh·kg-1,在 5 A·g-1下进行4 000次循环后,库伦效率接近100%和保持初始比电容的81.7%。这些电化学特性表明,核壳MNCO@NMS可以成为超级电容器高性能电极的选择之一。  相似文献   

12.
以柔性碳布(CC)作为基底,通过水热法制备VOx/CC纳米材料。利用扫描电镜(SEM)、X射线衍射仪(XRD)、循环伏安法(CV)、恒电流充放电法(GCD)和电化学交流阻抗法(EIS)等表征手段和电化学测试技术对材料的形貌、组成和电容性能进行分析。实验结果表明,当电流密度为10mA/cm2时,纳米片状VOx/CC电极仍保持531.5mF/cm2较高的面积比电容。交流阻抗测试表明溶液阻抗与传荷阻抗都明显减小,说明VOx具有良好的导电性并有利于传质扩散。  相似文献   

13.
以沸石咪唑骨架-67(ZIF-67)为前驱体,采用两步煅烧法制备了四氧化三钴/碳(Co_3O_4/C)纳米复合材料。利用自由基聚合法合成了Co_3O_4/C-聚丙烯酰胺水凝胶,进一步在水凝胶框架中原位聚合电化学活性聚吡咯颗粒,制备具有优异机械性能的柔性复合电极材料。在此基础上,将该柔性电极材料和水凝胶电解质组装成全固态柔性超级电容器;实验结果表明,Co_3O_4/C纳米材料与导电聚合物复合电极材料具有优异的超级电容器性能。通过恒流充放电曲线计算得到该器件具有197.83 m F/cm~2的面电容。在电化学循环10 000圈后该器件的容量仅下降9%,展示了其优异的循环稳定性;此外,该电容器具有的优异机械柔性,使其有望应用于未来柔性电子器件。  相似文献   

14.
胡涛  张熊  安亚斌  李晨  马衍伟 《化工学报》2020,71(6):2530-2546
锂离子电容器是一种采用电容型正极材料、电池型负极材料进行组装的储能器件,结合了锂离子电池与超级电容器两者的优点,兼具高能量密度、高功率密度和长循环寿命。但是由于锂离子电容器还存在正负极动力学过程以及容量不匹配的问题,大大影响了锂离子电容器的电化学性能。通常锂离子电容器的功率密度取决于负极材料,而能量密度取决于正极材料,因此为提高锂离子电容器的能量密度,还需发展具有高比容量和高导电性的正极材料。目前,碳材料因具有低成本、来源广泛、高比表面积和丰富的孔道结构等特点,是一种极具应用潜力的电极材料。综述并分析了各种碳材料(包括活性炭、模板炭、石墨烯和生物炭等)作为锂离子电容器正极材料的电化学性能与优缺点,最后对锂离子电容器正极材料的研究提出了建议与展望。  相似文献   

15.
利用木材纤维含氧基团的吸附作用锚定生长二氧化铈,成功制备出一维中空管状结构复合电极材料(WF@CeO2)。通过调控硝酸铈的添加量改善电极材料的电化学性能,并探讨了木材纤维对二氧化铈的增效作用。研究结果表明:当硝酸铈的添加量为2 mmol时,WF@CeO2-2样品的比表面积可达303.73 m2/g,所制备的电极在电流密度0.5 A/g下表现出高比电容(371 F/g),木材纤维的存在极大地提高了二氧化铈电极材料的电化学性能。以WF@CeO2-2电极组装的非对称超级电容器的比电容可达34.5 F/g,其峰值能量密度为44.16 Wh/kg,峰值功率密度为4 002.7 W/kg,在经过5 000次充放电循环后电容保持率为91.1%,表现出良好的循环稳定性。  相似文献   

16.
采用硬炭与锂源自放电这种简单的预锂化方法可使锂嵌入硬炭,而后以预锂化硬炭和活性炭分别为负极和正极组装了锂离子电容器,研究了负极预锂化时间对锂离子电容器比容量的影响,结果表明随着预锂化时间的延长,比容量先增大后减小,15 h为最适宜预锂化时间.经过15 h预锂化的锂离子电容器具有最高的能量密度(97.2 Wh·kg-1)和功率密度(5 412 W·kg-1)、最小的阻抗和良好的循环性能(1 A·g-1的电流密度下循环1 000次后,能量保持率为91.2%).三电极数据表明锂离子电容器优异的电化学性能源于正负极材料各自处于合适的工作电压区间.  相似文献   

17.
李鑫健  王保禄  高天  王旗  王学斌 《化工学报》2020,71(11):5025-5034
石墨烯基超级电容器,其功率密度较高,但能量密度受限。开发以三维石墨烯材料为载体的复合型赝电容多孔电极,是解决方案之一。本文采用铵盐辅助化学发泡法,制备了三维筋撑石墨烯泡沫体(SG);以SG为载体,采用水热还原法在其表面生长二氧化锰(MnO2)纳米棒阵列,从而构建了MnO2/SG自支撑多孔材料。利用MnO2/SG复合电极,组装了超级电容器,在0.5 A·g-1的电流密度下,比电容达343.6 F·g-1;经5000次循环,其容量保持率为83.8%;在500 W·kg-1的功率密度下,其能量密度达11.93 W·h·kg-1。因此,MnO2/SG复合电极是一种性能优异的赝电容材料,在电化学储能领域有良好的应用前景。  相似文献   

18.
为提高碳材料对聚硫化物的吸附能力,将MnO2原位化学沉积于活性碳纤维炭毡(ACFF)的碳纤维表面,得到了聚硫化物吸附强化的多孔导电材料(MnO2@ACFF)。将其作为中间层设置于隔膜和硫电极之间,有效控制了高载量硫电极的聚硫离子穿梭,提高了活性物质利用率和库伦效率,降低了电极极化和电化学反应阻抗,提高了电极循环稳定性,避免了锂硫电池的突然失效。在2 mA/cm2的电流密度下,载硫量为15 mg/cm2的硫电极经过350次充放电循环仍保有430 mA·h/g的比容量。提高硫电极载硫量虽然使电极的循环稳定性下降,但载量为20 mg/cm2和30 mg/cm2的硫电极0.1 C下经过100次循环,仍分别保有736 mA·h/g和446 mA·h/g的比容量,比容量保持率为65%,而且面积比容量和面积比能量也能分别保持64%和42%,高于当前锂离子电池的面积比容量和面积比能量。  相似文献   

19.
采用一步水热法在泡沫镍网上原位生长镍锰基层状双氢氧化物(NiMn-LDH)纳米片阵列电极,并通过氢氧化钾溶液中浸泡的方式提升电极的容量。采用SEM、XRD、TEM和XPS等手段对浸泡前后的电极材料进行表征。结果表明,在浸泡前后NiMn-LDH电极的形貌没有变化,但在电极材料内部发生了明显的CO32-和OH-的交换反应,降低体积较大的CO32-在LDH层间的分布数量,使层内空间成为OH-的“蓄水池”,缩短了电荷存储过程中OH-的迁移距离,因此电容性能有了明显提升。电化学测试结果表明,在5 mA/cm2电流密度下,电极的比电容从18.0 F/g增加至766.6 F/g(1.69 F/cm2)。将该电极与活性炭组装的全固态不对称超级电容器在功率密度为900 W/kg时,可呈现的能量密度为35.9 W·h/kg,并且器件的循环稳定性良好。  相似文献   

20.
《化学试剂》2021,43(9):1180-1187
水系锌离子混合电容器具有高能量密度和高功率密度等优点,受到了广泛的关注。开发高性能锌离子电容器的关键在于寻找电池型电极材料,以匹配其与电容型电极材料之间的功率不平衡。通过水热法制备出了碳纳米管与五氧化二铌的复合物(Nb_2O_5@CNTs),在0.2 A/g的电流密度下放电比容量为257 F/g,显示出其作为锌离子混合电容器电极材料的巨大潜力。将Nb_2O_5@CNTs作为负极、高比表面积的活性炭(AC)作为正极组装成Nb_2O_5@CNTs//AC锌离子混合电容器,该电容器的电压区间为0~1.9 V,在0.2 A/g的电流密度下其放电比容量高达95 F/g,经过3 000次循环后容量保持率为72%,具有良好的倍率性能和循环稳定性,能量密度最高达48 Wh/kg,功率密度最高达1 831 W/kg, Nb_2O_5@CNTs//AC锌离子混合电容器有望作为下一代高性能锌离子混合电容器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号