首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of Pb(Zr,Ti)O3 (PZT) films on single crystalline STO(0 0 1), LAO(0 0 1) and MgO(0 0 1) substrates was investigated by a coating photolysis process using excimer laser. The effects of the substrate on the product films were examined by FT-IR, UV, XRD (theta–2theta, pole-figure analysis). In the case of using STO and LAO substrates, c-axis oriented films were successfully obtained by an ArF laser irradiation without heat treatment. Crystallinity of the PZT films prepared by a coating photolysis was found to strongly depend on the substrate used compared to conventional thermal process. Using XRD pole-figure analysis for the PZT films on STO substrates, it was found that the films were highly in-plane aligned. The formation mechanisms by a coating photolysis process are also discussed by a photothermal reaction due to both substrate materials and MO starting materials.  相似文献   

2.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

3.
《Applied Superconductivity》1996,4(10-11):487-493
Biaxially aligned yttria-stabilized zirconia (YSZ) films on Ni-based alloy substrates were realized with high deposition rate of 0.5 μm min−1 by the inclined substrate deposition (ISD) technique without ion beam assistance. The microstructure of YSZ was examined to study the growth mechanism of biaxial alignment by ISD. Columnar structures toward the plasma plume suggested a self-shadowing effect in the ISD process. To raise Ic values, YBCO thickness was increased up to 5 μm. Thick YBCO films with high Jc values were realized on the ISD-grown YSZ. Long YBCO tapes with biaxial alignment were successfully fabricated using continuous pulsed laser deposition and a high Ic value of 37.0 A (77.3 K, 0 T) at a 75 cm voltage tap spacing was achieved.  相似文献   

4.
CdSe polycrystalline films were deposited by a close-spaced vacuum sublimation method at different substrate temperatures (Ts) using glass slides as substrates. At Ts≤673 K the films have a structure with strong dispersion of grain size (d) (from 0.1 to 0.3 μm). In this case the layer-by-layer mechanism determines the growth process of the layers. For Ts=873 K they have a columnar-like structure with a clear growth texture and the average grain size d=3–4 μm. The films obtained at Ts>473 K are n-type and only correspond to a single wurtzite phase. The crystallites are preferentially oriented with the (102) planes parallel to the substrate. At lower temperatures the films are bi-phase. The microstress level in CdSe films obtained at Тs=873 K (0.5×10−3) is considerably smaller than for the films deposited at Тs=773 K (4.0×10−3). Increase of the value of Ts improves the stoichiometry of CdSe films. Analysis of the low-temperature photoluminescence (PL) spectra let us determine the nature and energy of point and extended defects in the investigated films. It was shown that the films contain Na(Li) and P residual impurities. The results of the structural and PL measurements showed that the CdSe polycrystalline films are of fairly good crystal and optical quality for Ts=873 K and can be suitable for various applications.  相似文献   

5.
SnO2:F thin films were prepared by the spray pyrolysis (SP) technique at substrate temperature in the range 360–480 °C. The effect of varying the substrate temperature on the electrical and structural properties of the films was investigated by studying the I–V characteristics, the X-ray diffraction patterns (XRD), and the scanning electron microscope images (SEM). The I–V characteristics of the films were improved by increasing the substrate temperature, i.e. the resistivity of the films had decreased from 98 to 0.22 Ω cm. The X-ray diffraction patterns taken at 400 and 480 °C showed that the films are polycrystalline and two directions of crystal growth appeared in the difractogram of the film deposited at the lower substrate temperature, which correspond to the reflections from the (1 1 0) and (2 0 0) planes. With the increase in the substrate temperature a new direction of crystal growth appeared, which corresponds to the reflection from the (1 0 1) plane. Also the (1 1 0) and (2 0 0) lines were slightly grown at the higher substrate temperature, which means the crystal growth was enhanced and the grain size had increased. The SEM images confirmed these results and showed larger grains and more crystallization for the higher substrate temperature too.  相似文献   

6.
Si-based field-plate 0.13 μm gate length metal-oxide-semiconductor field effect transistor (Si MOSFET) with field-plate (FP) lengths of 0.1 μm, 0.2 μm, and 0.3 μm have been fabricated and investigated. The field-plate metals were connected to gate electrode in this study to improve device gate resistance (Rg) resulting in the better microwave performance. By increasing the length of field-plate metal extension (LFPE), the off-state drain-to-source surface leakage current can be suppressed. Besides, low surface traps in FP NMOS also leads to a higher drain-to-source current (Ids) especially at high current regime compared to standard device. The power added efficiency (PAE) was 56.3% for LFPE of 0.3 μm device, and these values where 54.7% and 53.8% for LFPE of 0.2 μm and 0.1 μm devices, respectively. Wider field-plate metal extension exhibits highly potential for low noise amplifier and high efficiency power amplifier applications.  相似文献   

7.
Fluorine-doped tin oxide (FTO) films were prepared by an improved sol-gel process, in which FTO films were deposited on glass substrates using evaporation method, with the precursors prepared by the conventional sol-gel method. The coating and sintering processes were combined in the evaporation method, with the advantage of reduced probability of films cracking and simplified preparation process. The effects of F-doping contents and structure of films on properties of films were analyzed. The results showed the performance index (ΦTC=3.535×10−3 Ω−1 cm) of the film was maximum with surface resistance (Rsh) of 14.7 Ω cm−1, average transmittance (T) of 74.4% when F/Sn=14 mol%, the reaction temperature of the sol was 50 °C, and the evaporation temperature was 600 °C in muffle furnace, and the film has densification pyramid morphology and SnO2−xFx polycrystalline structure with tetragonal rutile phase. Compared with the commercial FTO films (ΦTC=3.9×10−3 Ω−1 cm, Rsh=27.4 Ω cm−1, T=80%) produced by chemical vapor deposition (CVD) method, the ΦTC value of FTO films prepared by an improved sol-gel process is close to them, the electrical properties are higher, and the optical properties are lower.  相似文献   

8.
《Organic Electronics》2007,8(5):505-512
We have utilized the π–π interactions between 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecules and temperature-induced morphology changes to synthesize one-dimensional (1D) nanostructures of PTCDA on a heated (ca. 100 °C) titanium substrate through vacuum sublimation. Because of the pillared Ti structures and the presence of reactive Ti–Cl sites, the titanium substrate played a crucial role in assisting the PTCDA molecules to form 1D nanostructures. The average diameter of the nanofibers deposited on the Ti-CVD substrate, a Ti substrate formed by chemical vapor deposition (CVD), at 100 °C was ca. 84 nm, with lengths ranging from 100 nm to 3 μm. When the PTCDA nanofibers were biased under vacuum, the emission current remained stable. The turn-on electric field for producing a current density of 10 μA/cm2 was 8 V/μm. The maximum emission current density was 1.3 mA/cm2, measured at 1100 V (E = 11 V/μm). From the slope of the straight line obtained after plotting ln(J/E2) versus 1/E, we calculated the field enhancement factor β to be ca. 989. These results demonstrate the PTCDA nanofibers have great potential for applicability in organic electron-emitting devices.  相似文献   

9.
Thin amorphous nanostructured CdS films were photochemically obtained via direct UV radiation (λ=254 nm) of complex Cd[(CH3)2CHCH2CH2OCS2]2 on Si(1 0 0) and ITO-covered glass substrate by spin coating. Thin cadmium xanthate complex films’ UV photolysis results in loss of all ligands from the coordination sphere. X-ray photoelectron spectra for as-deposited CdS thin films show the most representative signals of Cd 3d5/2 located at 405 eV, Cd 3d3/2 located at 412 eV and a small signal S 2p located at 162 eV. The surface morphology of the films was examined via atomic force microscopy. This can be described as a fibrous-type surface without structural order, which is characteristic of an amorphous deposit. The optical band gap value was 2.85 and 3.15±0.1 eV.  相似文献   

10.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

11.
Cut-off frequency increase from 12.1 GHz to 26.4 GHz, 52.1 GHz and 91.4 GHz is observed when the 1 μm gate length GaN HEMT is laterally scaled down to LG = 0.5 μm, LG = 0.25 μm and LG = 0.125 μm, respectively. The study is based on accurately calibrated transfer characteristics (ID-VGS) of the 1 μm gate length device using Silvaco TCAD. If the scaling is also performed horizontally, proportionally to the lateral (full scaling), the maximum drain current is reduced by 38.2% when the gate-to-channel separation scales from 33 nm to 8.25 nm. Degradation of the RF performance of a GaN HEMT due to the electric field induced acceptor traps experienced under a high electrical stress is found to be about 8% for 1 μm gate length device. The degradation of scaled HEMTs reduces to 3.5% and 7.3% for the 0.25 μm and 0.125 gate length devices, respectively. The traps at energy level of ET = EV + 0.9 eV (carbon) with concentrations of NIT = 5 × 1016cm 3, NIT = 5 × 1017cm 3 and NIT = 5 × 1018cm 3 are located in the drain access region where highest electrical field is expected. The effect of traps on the cut-off frequency is reduced for devices with shorter gate lengths down to 0.125 μm.  相似文献   

12.
Effect of cobalt substitution on the band gap and absorption coefficient of the BiFeO3 thin films formed on quartz substrate by low cost spin coating method have been investigated. BiFe1−xCoxO3 (x=0, 0.03, 0.06 and 0.10) thin films are polycrystalline and it retains the rhombohedral distorted perovskite structure up to 10 mole % of Co substitution. Smooth and compact surface morphology with uniform size particles are observed in SEM micrographs. Narrowing and broadening of band gap is observed as a function of Co content. Two strong emission peaks at ~2.51 eV and ~2.38 eV are recorded for all films with noticeable change in intensity. Results obtained from the optical absorption and photoluminescence spectroscopy experiments have shown that there exists an inverse correlation between the variation in the band gap and the concentration of oxygen vacancies. Band gap decreased by ~100 meV and absorption coefficient increased by 28% at the wavelength of 375 nm in 6 mole % Co substituted thin film and these observations are necessary requirements to improve the efficiency of photovoltaic devices.  相似文献   

13.
This paper is focused on the analysis and optimization of power N-type LDMOS (LDNMOS) transistors (VBR > 120 V) with the purpose of being integrated in a new generation of Smart-Power technology based upon a 0.18 μm SOI-CMOS technology. The influence of some important design parameters such as the shallow trench isolation (STI) length (LSTI), the N-well doping profile and the relative position of the N-well mask to the STI block are analyzed in terms of voltage capability (VBR), specific on-state resistance (Ron-sp) and electrical safe-operating area (SOA) by means of Technology Computer-Aided Design (TCAD) numerical simulations. The evolution of the measured and simulated VBR as a function of the substrate (handle wafer) voltage (HWV) gives good physical insight of the optimal LDNMOS drift region design configuration. LDNMOS transistors with STI lengths partially covering the drift region length leads to better combined action of Ron-sp/VBR trade-off and electrical SOA results.  相似文献   

14.
Copper indium sulpho selenide films of different composition were deposited by the pulse plating technique at 50% duty cycle (15 s ON and 15 s OFF). X-ray diffraction studies indicated the formation of single phase chalcopyrite copper indium sulpho selenide films. Transmission Electron Microscope studies indicated that the grain size increased from 10 nm–40 nm as the selenium content increased. The band gap of the films was in the range of 0.95 eV–1.44 eV. Room temperature resistivity of the films is in the range of 16.0 Ω cm–33.0 Ω cm. Films of different composition used in photoelectrochemical cells have exhibited photo output. Films of composition, CuInS0.9Se0.1 have exhibited maximum output, a VOC of 0.74 V, JSC of 18.50 mA cm?2, ff of 0.75 and efficiency of 11.40% for 60 mW cm?2 illumination.  相似文献   

15.
This study focused on the effect of substrate temperature (350 °C, 400 °C, and 450 °C) on morphological, optical, and electrical properties of indium tin oxide (ITO) films deposited onto porous silicon/sodalime glass substrates through jet nebulizer spray pyrolysis for use in heterojunction solar cells. X-ray diffraction analysis confirmed the formation of pure and single-phase In2O3 for all the deposited films whose crystallinity was enhanced with increasing substrate temperature, as shown by the increasing (222) peak intensity. Morphological observations were conducted using scanning electron microscopy to reveal the formation of continuous dense films composed of nanograins. The UV–vis spectra revealed that the transmittance increased with increasing substrate temperature, reaching a value of over 80% at 450 °C. The photoelectric performance of the solar cell was studied using the IV curve by illuminating the cell at 100 mW/cm2. A high efficiency (η) of 3.325% with Isc and Voc values of 14.8 mA/cm2 and 0.60 V, respectively, was attained by the ITO solar cell annealed at 450 °C.  相似文献   

16.
《Microelectronics Journal》2007,38(10-11):1027-1033
In this paper, we have investigated the electrical characteristics of power lateral double-diffused MOSFETs (LDMOSFETs) having different gate lengths (2.1–3 μm) and drift lengths (6.6–12.6 μm) in the temperature range 100–500 K. The results of this study indicate that gate length and drift region length have a great effect on electrical characteristics, but they have little effect on temperature dependence. The specific on-resistance and the off-state breakdown voltage increase with temperature. The result shows that the specific on-resistance increases exponentially with the exponent 2.2 and, by contrast, the off-state breakdown voltage increases linearly with a slope of 100 mV/K (drift region concentration of measured device: 2×1015 cm−3). As a result, Ron/BV, known for a figure of merit of power device, increases with temperature.  相似文献   

17.
Copper indium sulfide (CISu) films were deposited by the pulse galvanostatic deposition technique at different duty cycles. The films are polycrystalline with peaks corresponding to the chalcopyrite phase of CISu. The grain size and surface roughness increased from 10 to 25 nm and 0.85 to 2.50 nm respectively with increase of duty cycle. Optical band gap in the range of 1.30–1.51 eV was observed for the films deposited at different duty cycles. Room temperature resistivity of the films is in the range of 0.1–3.67 Ω cm. Photoconductivity measurements were made at room temperature. Photocurrent spectra exhibited maximum corresponding to the band gap of copper indium sulphide. CdS/CuInS2 fabricated with CISu films deposited at 50% duty cycle have exhibited a Voc of 0.62 V, Jsc of 16.30 mA cm?2, FF of 0.71 and efficiency of 7.16%.  相似文献   

18.
Aluminum nitride (AlN) films have been grown in pure N2 plasma using cathodic arc ion deposition process. The films were prepared at different substrate bias voltages and temperatures. The aim was to investigate their influence on the Al macro-particles, structural and optical properties of deposited films. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning electron microscope (SEM) and Rutherford backscattering spectrometry (RBS) were employed to characterize AlN thin films. XRD patterns indicated the formation of polycrystalline (hexagonal) films with preferential orientation of (002), which is suppressed at higher substrate bias voltage. FTIR and Raman spectroscopic analysis were used to assess the nature of chemical bonding and vibrational phonon modes of AlN thin films respectively. FTIR spectra depicted a dominant peak around 850 cm?1 corresponding to the longitudinal optical (LO) mode of vibration. A shift in this LO mode peak towards higher wavenumbers was observed with the increase of substrate bias voltage and temperature, showing the upsurge of nitrogen concentration in the deposited film. Raman spectra illustrated a peak at 650 cm?1 corresponding to E2 (high) phonon mode depicting the c-axis oriented (perpendicular to substrate) AlN film. SEM analysis showed the AlN film deposited at higher substrate bias voltage contains fewer amounts of Al macro-particles.  相似文献   

19.
Wide band gap and highly conducting n-type nano-crystalline silicon film can have multiple roles in thin film solar cell. We prepared phosphorus doped micro-crystalline silicon oxide films (n-μc-SiO:H) of varying crystalline volume fraction (Xc) and applied some of the selected films in device fabrication, so that it plays the roles of n-layer and back reflector in p-i-n type solar cells. It is generally understood that a higher hydrogen dilution is needed to prepare micro-crystalline silicon, but in case of the n-μc-SiO:H an optimized hydrogen dilution was found suitable for higher Xc. Observed Xc of these films mostly decreased with increased plasma power (for pressure<2.0 Torr), increased gas pressure, flow rate of oxygen source gas and flow rates of PH3>0.08 sccm. In order to determine deposition conditions for optimized opto-electronic and structural characteristics of the n-μc-SiO:H film, the gas flow rates, plasma power, deposition pressure and substrate temperature were varied. In these films, the Xc, dark conductivity (σd) and activation energy (Ea) remained within the range of 0–50%, 3.5×10−10 S/cm to 9.1 S/cm and 0.71 eV to 0.02 eV, respectively. Low power (30 W) and optimized flow rates of H2 (500 sccm), CO2 (5 sccm), PH3 (0.08 sccm) showed the best properties of the n-μc-SiO:H layers and an improved performance of a solar cell. The photovoltaic parameters of one of the cells were as follows, open circuit voltage (Voc), short circuit current density (Jsc), fill-factor (FF), and photovoltaic conversion efficiency (η) were 950 mV, 15 mA/cm2, 64.5% and 9.2% respectively.  相似文献   

20.
Sputter deposited molybdenum (Mo) thin films are used as back contact layer for Cu(In1−xGax)(Se1−ySy)2 based thin film solar cells. Desirable properties of Mo films include chemical and mechanical inertness during the deposition process, high conductivity, appropriate thermal expansion coefficient with contact layers and a low contact resistance with the absorber layer. Mo films were deposited over soda-lime glass substrates using DC-plasma magnetron sputtering technique. A 23 full factorial design was made to investigate the effect of applied power, chamber pressure, and substrate temperature on structural, morphological, and electrical properties of the films. All the films were of submicron thickness with growth rates in the range of 34–82 nm/min and either voided columnar or dense growth morphology. Atomic force microscope studies revealed very smooth surface topography with average surface roughness values of upto 17 nm. X-ray diffraction studies indicated, all the films to be monocrystalline with (001) orientation and crystallite size in the range of 4.6–21 nm. The films exhibited varying degrees of compressive or tensile residual stresses when produced at low or high chamber pressure. Low pressure synthesis resulted in film buckling and cracking due to poor interfacial strength as characterized by failure during the tape test. Measurement of electrical resistivity for all the films yielded a minimum value of 42 μΩ cm for Mo films deposited at 200 W DC power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号