首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this work, the desorption–crystallization of CO2–CaCO3 in MSF distillers was simulated by coupling mass transfer with chemical reaction and correlating the CaCO3 crystallization rates to the CO2 release rates. The model was applied to two 20-stage reference MSF once-through and recycles distillers. The CO2 release rates decreased exponentially from the first stage to the last stage. The CO2 release rates increased with increasing top brine temperature (TBT) and so CaCO3 deposition rates did. The CaCO3 deposition rates increased by 76.9, 102.5 and 123.0 g per ton distillate at 90, 100 and 110 °C, respectively. This corresponded to fouling resistance of 0.64, 0.83 and 1.00 m2K/kW, respectively. The results were fully discussed and interpreted.  相似文献   

2.
Nimbin, a component found in neem seeds, which is reported to have several valuable medicinal properties including: anti-inflammatory, anti-pyretic, anti-fugal, antihistamine and antiseptic was extracted from neem seeds using supercritical CO2 and CO2 with a methanol modifier.Nimbin extraction yields using supercritical carbon dioxide were found to be approximately 85% at 308 K, 23 MPa and a CO2 flow rate of 0.62 cm3/min for a 2-g sample of neem. An optimum extraction pressure appears to exist at ≈23 MPa and 328 K. Although extraction using a methanol modifier did improve the extraction somewhat, methanol was not found to be an effective modifier for extracting nimbin.Dynamic extraction curves were predicted using three empirical models and a theoretical model. The three empirical models were: a Langmuir gas adsorption model, a first order plus dead time (FOPDT) model and a so-called tn cyclone model used to incorporate sigmoidal curves. The parameters in the empirical models were fitted to the experimental data. The Goto et al. [J. Chem. Eng. Jpn. 31 (1998) 171] theoretical model was compared to the experimental results and was found to fit the data well. The theoretical model shows that the extraction yield depends strongly on the solvent flow rate, that is, external mass transfer or equilibrium is the controlling step of this process.  相似文献   

3.
The behaviour of the hydrated phases in the Al2O3–H2O system is of major importance in the chemistry of ceramic materials. In this work, stability and metastability relations in the Al2O3–H2O system have been studied. Gibbs free energy functions of the gibbsite and boehmite phases have been critically revised and new optimized functions have been calculated. The functions obtained have been used to predict the stability and metastability relations by calculating a PT diagram following the CALPHAD methodology. Comparison with the corresponding available experimental data is discussed.  相似文献   

4.
Scanning electron microscopy (SEM), electron-probe microanalysis, energy- and wavelength-dispersive X-ray analysis and X-ray powder diffraction were used to investigate the subsolidus phase relations in the pseudo-ternary La2O3–TiO2–Mn2O3 system in air (oxygen partial pressure pO2=0.21   atm) at 1275 °C. The addition of Mn2O3 to the starting La2O3:3TiO2 mixture led to the formation of a La-deficient perovskite La2/3TiO3 compound. The oxides form two new compounds with the proposed compositions: (i) La1.7Ti13.0Mn6.3O38−x, with a davidite-like crystal structure, and (ii) La49Ti18Mn13O129. There were also several solid solutions existing over a wide range of concentrations.  相似文献   

5.
Zn–H2O–CO2 is a good reducing reagent for the reduction of imines in supercritical carbon dioxide (scCO2). They provide the corresponding vicinal diamines in moderate to good yields. The results showed that carbon dioxide plays an important role as both solvent and reagent.  相似文献   

6.
Direct synthesis route was developed to support TiO2–ZrO2 binary metal oxide onto the carbon templated mesoporous silicalite-1 (CS-1). Metal hydroxide modified carbon particles could play a role as hard template and simultaneously support metal components on the mesopores during the crystallization of zeolites. Such supported TiO2–ZrO2 binary metal oxides (TZ/CS-1) showed better resistance to deactivation in the oxidative dehydrogenation of ethylbenzene (ODHEB) in the presence of CO2. These catalysts were found to be active, selective and catalytically stable (10 h of time-on-stream) at 600 °C for the dehydrogenation of ethylbenzene (EB) to styrene (Sty).  相似文献   

7.
Oxidation of bulk samples of 〈Al〉 by water and H2O/CO2 mixture at sub- and supercritical conditions for uniform temperature increase and at the injection of H2O (665 K, 23.1 MPa) and H2O/CO2 (723 K, 38.0 MPa) fluids into the reactor has been studied. Transition of 〈Al〉 into AlOOH and Al2O3 nanoparticles has been found out. Aluminum samples oxidized by H2O and H2O/CO2 fluids at the injection mostly consist of large particles (300-500 nm) of α-Al2O3. Those oxidized for uniform temperature increase contain smaller particles (20-70 nm) of γ-Al2O3 as well. Mechanism of this phenomenon is explained by orientation of oxygen in H2O polar molecules to the metal in the electric field of contact voltage at Al/AlOOH and Al/Al2O3 boundary. Addition of CO2 to water resulted in CO, CH4, CH3OH and condensed carbon, increase in size of Al2O3 nanoparticles and significant decrease in time delay. In pure CO2 〈Al〉 oxidation resulted in oxide film. Using temperature and time dependences of gaseous reactant pressure and Redlich-Kwong state equation, kinetics of H2 formation has been described and oxidation regularities determined. At aluminum oxidation by H2O and H2O/CO2 fluids, self-heating of the samples followed by oxidation rate increase has been registered. The samples of oxidized aluminum have been studied with a transmission electronic microscope, a thermal analyzer and a device for specific surface measurement. The effect of oxidation conditions on the characteristics of synthesized nanoparticles has been found out.  相似文献   

8.
GdAlO3 and Al2O3 powders were mixed and pulverized using ball mills. The prepared powder was sintered by SPS at 1450 °C without holding time. SEM observation of the sintered specimen showed a eutectic-like microstructure. This is called ‘pseudo-eutectic’ in this research. The microstructure formed from a powder pulverized by a tumbling ball mill for one week was much finer than that by a planetary ball mill for 5 and 10 h. The fine homogeneous eutectic-like (pseudo-eutectic) microstructures could be formed at both eutectic and off-eutectic compositions. In case of crystallization from a melt of eutectic components, homogeneous eutectic microstructures can be formed only at restricted compositions very close to the eutectic one. Coarse primary crystals generally exist in the eutectic microstructure at off-eutectic compositions. The pseudo-eutectic microstructures can be formed at any compositions because a mixing ratio of the starting powders can be varied.  相似文献   

9.
The response of Al2O3, Al2O3–SiC–(C) and Al2O3–C nanocomposites to grinding was investigated in terms of changes of quality of ground surfaces and of the weight losses with time. The study used monolithic polycrystalline aluminas as references, and alumina-based composites with nanosized SiC and C inclusions and with alumina matrix grain size varying from submicrometer to approximately 4 μm. The studied materials can be roughly divided into two groups. Materials with submicrometer alumina matrix grains (Group 1) wear predominantly by plastic deformation and grooving. Coarse-grained materials (Group 2) wear by mixed wear mechanism involving crack initiation and interlinking accompanied by grain pull-out, plastic deformation and grooving. The wear rate of composites increases with increasing volume fraction of SiC. The Group 2 materials wear much faster then those with submicron microstructure. In all cases (with one exception) the wear resistance of composites was higher than that of pure aluminas of comparable grain sizes used as reference materials.  相似文献   

10.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

11.
The carbonation characteristics of pure CaO derived from nano-sized CaCO3 were investigated as part of a multi-cycle performance study which showed potential for exploiting the properties of nano-sized CaO sorbents in a continuous CO2 capture-and-release process. To help understand the approach to the decay asymptote, which is established through multiple capture-and-release cycles, a qualitative model was proposed. The rate of approach and residual conversion defined by the decay asymptote represents the establishment of an equilibrium between the pore volume and surface area loss during thermal sintering; and the pore volume and surface area regeneration as a consequence of a solid-state diffusion mechanism, and the subsequent release of CO2 in the next calcination cycle. This qualitative explanation is valid for all CaO derived CO2 sorbents.  相似文献   

12.
Scaling of membranes by CaCO3 and CaSO4-CaCO3 is of considerable concern in membrane desalination processes. It is particularly relevant for porous crossflow hollow fiber-based membrane distillation (MD) processes which can achieve high water recovery and can encounter heavy precipitation of scaling salts. Therefore an analysis of the scaling potential for CaCO3 and mixed CaSO4-CaCO3 systems is presented first in terms of the saturation index profiles throughout the crossflow hollow fiber membrane module as a function of the location in the module for feed solutions resulting from high water recovery. Scaling experiments during DCMD with tap water, CaCO3 and mixed CaSO4/CaCO3 were conducted over a wide range of values of saturation index (SI) (10<SIcalcite<64, 1.1<SIGypsum<1.5) using porous fluorosilicone coated crossflow hollow fiber membrane desalination modules. The effects of flow rates, flow patterns (cross vs. parallel flow) and the nature of the membrane surface on possible scaling scenarios were further investigated for the scaling salt CaSO4. Experimental results at high saturation indices show that even when the precipitation rate was fast in the CaCO3 system at elevated temperatures or high concentrations, no significant loss in water vapor permeation was observed suggesting no effect of scaling on membrane flux. However, for a few of the mixed CaSO4-CaCO3 systems, the water vapor flux dropped somewhat. Possible explanations have been provided and a method to solve this problem has been illustrated. Fast feed flow rate resulted in a shortened induction period. Crossflow flow pattern and the nature of the hydrophobic porous coating on the membrane surface were proven to be helpful in developing the resistance to scaling. Results of modeling show that concentration polarization effects are far more important than temperature polarization effects.  相似文献   

13.
2ZnO·3B2O3·3H2O is an industrially important zinc borate. Herein, 2ZnO·3B2O3·3H2O has been prepared via a rheological phase reaction method using zinc oxide and boric acid as starting materials. This route is facile and acceptable for green chemical synthesis, producing no pollution and giving a yield of near 100% of theoretical value. And in this method, the complete conversion of the starting materials can be achieved in the presence of only 0.04 mL water (one drop of water). The products have been characterized by X-ray powder diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM) and particle size distribution. The effects of experimental conditions on the products were investigated. The main factors that affect the formation of zinc borate are water volume, sealing state, reaction time and temperature.  相似文献   

14.
The management of agro-industrial residues is an important issue for environmental reasons and the reuse of byproducts represents a good alternative, especially if it is conjugated with green technologies and the production of valuable products. Portuguese elderberry pomace is rich in anthocyanins with therapeutic properties that confer to this byproduct potential to be applied in the food and pharmaceutical industries. Fractionated high pressure extractions from elderberry pomace were performed using supercritical CO2 extraction, followed by enhanced solvent extraction (ESE) with diverse CO2/ethanol/H2O solvent mixtures (0-90%, 0.5-100%, 0-95%, v/v/v), at 313 K and 21 MPa, in order to obtain anthocyanin-rich fractions. The ESE solvent mixtures had a substantial effect on extracts yield and composition. The maximum extraction yield (24.2%), total phenolic compounds (15.8% gallic acid equivalents), total flavonoids (8.9% epicatechin equivalents), total anthocyanins (15.0% cyanidin-3-glucoside equivalents) and antioxidant activity (IC50 of 21 μg) achieved highlight the great potential of elderberry pomace for valuable applications.  相似文献   

15.
We have applied photoelectron spectroscopy to investigate the surface composition after different surface treatments involving Br2–H2O mixtures in order to study wet chemical etching. Emersion experiments from Br2–H2O solution are compared with model experiments, in which Br2–H2O adsorbate and coadsorbate mixtures react with clean GaAs(110) surfaces. Our results indicate that Ga- and As-bromides formed initially are hydrolyzed to form the respective oxides. Without addition of Br2, only slight oxidation of the surface takes place. There is an enrichment of Ga due to loss of As both in adsorption as well as in emersion experiments. Since in emersion experiments only a final situation is analyzed, the relative influence of surface reactivity and subsequent solvation effects cannot be distinguished easily, while model experiments give clear information on reaction products formed intermediately. However, model experiments differ in environment and temperature from the real solid–liquid interface. The presented results demonstrate that a combination of emersion and model experiments provide valuable insight into the mechanism of wet chemical etching on a microscopic level.  相似文献   

16.
17.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

18.
The objective of this study is to evaluate the effect of low-level hydrogen sulfide (H2S) on carbon dioxide (CO2) corrosion of carbon steel in acidic solutions, and to investigate the mechanism of iron sulfide scale formation in CO2/H2S environments. Corrosion tests were conducted using 1018 carbon steel in 1 wt.% NaCl solution (25 °C) at pH of 3 and 4, and under atmospheric pressure. The test solution was saturated with flowing gases that change with increasing time from CO2 (stage 1) to CO2/100 ppm H2S (stage 2) and back to CO2 (stage 3). Corrosion rate and behavior were investigated using linear polarization resistance (LPR) technique. Electrochemical impedance spectroscopy (EIS) and potentiodynamic tests were performed at the end of each stage. The morphology and compositions of surface corrosion products were analyzed using scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of 100 ppm H2S to CO2 induced rapid reduction in the corrosion rate at both pHs 3 and 4. This H2S inhibition effect is attributed to the formation of thin FeS film (tarnish) on the steel surface that suppressed the anodic dissolution reaction. The study results suggested that the precipitation of iron sulfide as well as iron carbonate film is possible in the acidic solutions due to the local supersaturation in regions immediately above the steel surface, and these films provide corrosion protection in the acidic solutions.  相似文献   

19.
The effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3 were investigated by differential thermal analysis (DTA)–thermogravimetry (TG), X-ray powder diffraction (XRD) and 29Si and 27Al MAS NMR. Unground and ground samples showed similar crystallization behavior at about 850 °C, and the crystallizing temperature was relatively unaffected by grinding. On the other hand, the crystalline products were strongly influenced by the grinding. Gehlenite (Ca2Al2SiO7) was the dominant phase in the unground samples but layer-structured CaAl2Si2O8 was dominant in the ground samples, together with a small amount of anorthite, which is the stable phase. The amount of anorthite gradually increased with higher firing temperature, the sample fired at 1000 °C being almost completely anorthite. Grinding treatment before firing was effective in accelerating the decomposition of CaCO3 and extending the temperature range for the formation of CaAl2Si2O8, a phase with local structure similar to that of layered CaAl2Si2O8.  相似文献   

20.
Supported nickel catalysts of composition Ni/Y2O3–ZrO2 were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y2O3–ZrO2 in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO2 conversion of 61% on the 5NiYZ catalyst at 800 °C, representing a better response than for the catalyst of the same composition prepared by wet impregnation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号