首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Li 《Acta Mechanica》2003,165(1-2):47-71
Summary. The saturation-strip model for piezoelectric crack is re-examined in a permeable environment to analyze fracture toughness of a piezoelectric ceramic. In this study, a permeable crack is modeled as a vanishing thin but finite rectangular slit with surface charge deposited along crack surfaces. This permeable saturation crack model reveals that there exists a possible leaky mode for electrical field, which allows applied electric field passing through the dielectric medium inside a crack. By taking into account the leaky mode effect, a first-order approximated solution is obtained with respect to slit height, h 0, in the analysis of electrical and mechanical fields in the vicinity of a permeable crack tip. The permeable saturation crack model presented here also considers the effect of charge distribution on crack surfaces, which may be caused by any possible charge-discharge process in the dielectric medium inside the crack. A closed form solution is obtained for the permeable crack perpendicular to the poling direction under both mechanical as well electrical loads. Both local and global energy release rates are calculated. Remarkably, the global energy release rate for a permeable crack has an expression, where M is elastic modulus, a is the half crack length, is permittivity constant, and e is piezoelectric constant. This result is in a broad agreement with some experimental observations and may be served as the fracture criterion for piezoelectric materials. This contribution elucidates how an applied electric field affects crack growth in piezoelectric ceramic through its interaction with permeable environment surrounding a crack. The author would like to acknowledge the support from the Academic Senate Committee on Research at University of California (Berkeley) through the fund of BURNL-07427-11503-EGSLI.  相似文献   

2.
The problem of an eccentric penny-shaped crack embedded in a piezoelectric layer is addressed by using the energetically consistent boundary conditions. The Hankel transform technique is applied to solve the boundary-value problem. Then two coupling Fredholm integral equations are derived and solved by using the composite Simpson’s rule. The intensity factors of stress, electric displacement, crack opening displacement and electric potential together with the energy release rate are further given. The effects of the thickness of a piezoelectric layer and the discharge field inside the penny-shaped crack on the fracture parameters of concern are discussed through numerical computations. The observations reveal that an increase of the discharge field decreases the stress intensity factor and the energy release rate. An eccentric penny-shaped crack is easier to propagate than a mid-plane one in a piezoelectric layer, and the geometry of the crack along with the layer thickness have significant influences on the electrostatic traction acting on the crack faces. The solutions for a penny-shaped dielectric crack in an infinite or a semi-infinite piezoelectric material can be obtained easily.  相似文献   

3.
Complete stress and electric fields near the tip of a conducting crack between two dissimilar anisotropic piezoelectric media, are obtained in terms of two generalized bimaterial matrices proposed in this paper. It is shown that the general interfacial crack-tip field consists of two pairs of oscillatory singularities. New definitions of real-valued stress and electric field intensity factors are proposed. Exact solutions of the stress and electric fields for basic interface crack problems are obtained. An alternate form of the J integral is derived, and the mutual integral associated with the J integral is proposed. Closed form solutions of the stress and electric field intensity factors due to electromechanical loading and the singularities for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media, are also obtained by using the mutual integral.  相似文献   

4.
The electro-elastic problem of a transversely isotropic piezoelectric material with a flat crack occupying the outside of a circle perpendicular to the poling axis is considered in this paper. By using the Hankel transform technique, a mixed boundary value problem associated with the considered problem is solved analytically. The results are presented in closed form both for impermeable crack and for permeable crack. A full field solution is given, i.e., explicit expressions for electro-elastic field at any point in the entire piezoelectric space, as well as field intensity factors near the crack front, are determined. A numerical example for a cracked PZT-5H ceramic is given, and the effects of applied electric fields on elastic and electric behaviors are presented graphically.  相似文献   

5.
This paper studies the static fracture problems of an interface crack in linear piezoelectric bimaterial by means of the extended finite element method (X‐FEM) with new crack‐tip enrichment functions. In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and crack‐tip asymptotic functions to the classical finite element approximation within the framework of the partition of unity. In this work, the coupled effects of an elastic field and an electric field in piezoelectricity are considered. Corresponding to the two classes of singularities of the aforementioned interface crack problem, namely, ? class and κ class, two classes of crack‐tip enrichment functions are newly derived, and the former that exhibits oscillating feature at the crack tip is numerically investigated. Computation of the fracture parameter, i.e., the J‐integral, using the domain form of the contour integral, is presented. Excellent accuracy of the proposed formulation is demonstrated on benchmark interface crack problems through comparisons with analytical solutions and numerical results obtained by the classical FEM. Moreover, it is shown that the geometrical enrichment combining the mesh with local refinement is substantially better in terms of accuracy and efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
S. M. Kwon 《Acta Mechanica》2004,167(1-2):73-89
Summary. In this paper, a finite crack propagating at constant speed in a functionally graded piezoelectric material (FGPM) is studied. It is assumed that the electroelastic material properties of the FGPM vary continuously according to exponential gradients along the thickness of the strip, and that the strip is under anti-plane shear mechanical and in-plane electrical loads. The analysis is conducted on the electrically unified (natural) crack boundary condition, which is related to the ellipsoidal crack parameters. By using the Fourier transform, the problem is reduced to the solutions of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and crack sliding displacement are presented to show the influences of the elliptic crack parameters, crack propagation speed, electric field, FGPM gradation, crack length, and electromechanical coupling coefficient. It reveals that there are considerable differences between traditional electric crack models and the present unified crack model.  相似文献   

7.
Piezoelectric ceramics find an application in many fields of technology. They may serve as sensors or actuators, mostly beeing exposed to high electric and mechanical loads. Therefore, fracture mechanics of piezoelectrics is an important field preserving strength and reliability under different conditions of application. This paper deals with the calculation of electromechanical energy release rates for arbitrary cracks in spatial piezoelectric structures applying a generalized J-integral. The crack problem is solved using a commercial FEM-code obtaining electric and mechanical field variables in nodes and integration points. These results serve as input data for the numerical computation of the electromechanical J-integral. The results are compared to findings from analytical and alternative numerical methods.  相似文献   

8.
The influence of electrostatic tractions acting upon crack faces on the fracture mechanical quantities in piezoelectric materials under electromechanical loading is investigated. The physical background are the mechanical and dielectric equilibria at an interface between two dielectric domains and related mechanical stresses. The model is applied to a crack problem, where a dielectric interface exists between the solid material and the insulating crack medium. The analytical solution for a crack in an infinite piezoelectric body accounting for intrinsic charges and electrostatic stresses on the crack faces gives insight into the influence of crack boundary conditions on the field intensity factors. Varying loading conditions and the dielectric permittivity of the flaw yields a parameter range in which induced crack surface tractions are relevant. Then, the calculation of the J-integral for thermodynamically consistent crack boundary conditions is discussed. The line integral along the crack faces is replaced by a simple jump term. This approach comes out to be exact only for a simplified model of the electrostatic tractions.  相似文献   

9.
S. M. Kwon  K. Y. Lee 《Acta Mechanica》2002,153(1-2):23-32
Summary We consider an anti-plane edge moving crack problem with the constant velocity in a piezoelectric ceramic block. The far-field anti-plane shear mechanical and in-plane electrical loads are applied to the piezoelectric block. It is expressed to a Fredholm integral equation of the second kind. Expressions for the dynamic field intensity factors and the dynamic energy release rate are obtained. The dynamic stress intensity factor and the dynamic energy release rate depend on the crack propagation speed. Numerical results for several piezoelectric materials are also presented.  相似文献   

10.
An elliptical piezoelectric inclusion embedded in an infinite piezoelectric matrix is analyzed in the framework of linear piezoelectricity. Using the conformal mapping technique, a closed-form solution is obtained for the case of a far-field antiplane mechanical load and an inplane electrical load. The solution to a permeable elliptical hole problem is obtained as a limiting case of vanishing elastic modulus of the inclusion. This enables the study of the nature of crack tip electric field singularity which is shown to depend on the electrical boundary condition imposed on the crack faces. The energy release rate of a self-similarly expanding slender crack in the presence of electric fields is obtained by using the generalized M-integral. The energy release rate expression indicates that the electric field has a crack-arresting influence. This effect is inferred to have a more fundamental physical origin in the interaction between the applied electric field and the induced surface charges on the crack faces. An experimental result contradicting the theoretical prediction on the crack-arresting effect is also discussed.  相似文献   

11.
Abstract

This paper presents general antiplane electro‐mechanical field solutions for a piezoelectric finite wedge subjected to a pair of concentrated forces and free charges. The boundary conditions on the circular segment are considered as traction free and insulated. Using finite Mellin transform methods, the stress and electrical displacement in all fields of the piezoelectric finite wedge are derived analytically. Singularity orders and intensity factors of stress and electrical displacement can be obtained too. After being reduced to a problem of an antiplane edge crack or an infinite wedge in a piezoelectric medium, the results compare well with those of previous studies.  相似文献   

12.
By considering an isotropic elastic dielectric material as a transversely isotropic piezoelectric material with little piezoelectricity, the interface crack problem in elastic/piezoelectric bimaterials is treated in this paper based on Stroh's complex potential theory (1958) with the impermeable crack model. In order to obtain universal results, Numerical results of the near tip stress field and the electric field for 35 kinds of dissimilar bimaterials constructed by five kinds of elastic dielectric materials, namely Epoxy, Polymer, Al2O3, SiC and Si3N4, and seven kinds of piezoelectric ceramics, namely PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7, and PZT-PIC151, are presented. It is concluded that all the combinations lead to the same results: in which the first crack tip singularity parameter does not vanish whereas the second parameter always vanishes. From the physical point of view, an interface crack in such a dissimilar material shows a similar oscillating singularity as that in dissimilar elastic bimaterials. Moreover, by using a maximization value technique, the regular inverse square root singularity r –1/2 of the stress and the electric field at the crack tip can be realized, although, theoretically, an interface crack in such bimaterials possesses the well-known oscillating singularity r –1/2± i. Of great significance is that, in the absence of mechanical loadings, a purely electric loading can induce relative large model I or II stress intensity factor for a interface crack in some elastic/piezoelectric bimaterials, which implies that the electric-induced failure may be realized in such bimaterials.  相似文献   

13.
研究粘接着弹性层的压电层内硬币型裂纹的断裂问题。压电层与弹性层均为横观各向同性材料,r轴方向无限长,z轴方向有限厚度。压电层沿z轴方向极化。考虑电不导通裂纹表面条件,利用Hankel积分变换将问题化为求解积分方程组,导出了场强度因子与能量释放率的表达式。给出了数值计算结果,并分析了弹性层厚度对场强度因子与能量释放率的影响。  相似文献   

14.
Cracks and porosities inside the piezoelectric materials can weaken the electromechanical coupling effect, and hence influence the electromechanical coupling behavior of piezoelectric materials considerably. This paper studies the effect of internal cracking on the effective properties of piezoelectric media. It focuses on the piezoelectric medium of finite size with finite crack. The mechanical and electric fields in the piezoelectric material and the crack are formulated by singular integral method. Effects of crack size, medium border, and electric permeability of the crack on the overall electromechanical properties of the piezoelectric material are obtained and displayed graphically. In addition, the crack tip coupling electromechanical field intensity factors are also presented as they are not available in open literature for a finite crack in a finite piezoelectric media.  相似文献   

15.
This paper considers the non-axisymmetric three-dimensional problem of a penny-shaped crack with permeable electric conditions imposed on the crack surfaces, subjected to a pair of point normal forces applied symmetrically with respect to the crack plane. The crack is embedded in an infinite transversely isotropic piezoelectric body with the crack face perpendicular to the axis of material symmetry. Applying the symmetry of the problem under consideration then leads to a mixed–mixed boundary value problem of a half-space, for which potential theory method is employed for the purpose of analysis. The cases of equal eigenvalues are also discussed. Although the treatment differs from that for an impermeable crack reported in literature, the resulting governing equation still has a familiar structure. For the case of a point force, exact expressions for the full-space electro-elastic field are derived in terms of elementary functions with explicit stress and electric displacement intensity factors presented. The exact solution for a uniform loading is also given.  相似文献   

16.
The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

17.
The problem of an anti-plane Griffith crack moving along the interface of dissimilar piezoelectric materials is solved by using the integral transform technique. It is shown from the result that the intensity factors of anti-plane stress and electric displacement are dependent on the speed of the Griffith crack as well as the material coefficients. When the two piezoelectric materials are identical, the present result will reduce to the result for the problem of an anti-plane moving Griffith crack in homogeneous piezoelectric materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Closed-form analytical solutions are presented for the physical problem of a semi-infinite crack interacting with a line dislocation under the loading of a line force and a line charge in two-dimensional infinite anisotropic piezoelectric medium. The crack can be a conventional Griffith crack or an anti-crack (a rigid line inhomogeneity). Using the extended Stroh formalism and perturbation technique, the explicit expressions of the field intensity factors and the image force on the dislocation are computed as functions of dislocation location and material constants. The results are discussed and compared with those from special cases existed in the literature. The analytical solutions obtained can be applied to studying interacting cracks and crack branching problems in piezoelectric solids.  相似文献   

19.
A theoretical fracture mechanics for brittle piezoelectric and dielectric materials is developed consistent with standard features of elasticity and dielectricity. The influence of electric field and mechanical loading is considered in this approach and a Griffith style energy balance is used to establish the relevant energy release rates. Results are given for a finite crack in an infinite isotropic dielectric and for steady state cracking in a piezoelectric strip. In the latter problem, the effect of charge separation in the material and discharge in the crack are considered. Observations of crack behavior in piezoelectrics under combined mechanical and electrical load are discussed to assess which features of the theory are useful.  相似文献   

20.
Interface and interfacial cracks interacting with screw dislocations in piezoelectric bimaterials subjected to antiplane mechanical and in-plane electrical loadings are studied within the framework of linear piezoelectricity theory. Straight dislocations with the Burgers vector normal to the isotropic basal plane near the interface or interfacial crack are considered. The dislocations are characterized by a discontinuous electric potential across the slip plane and are subjected to a line-force and a line-charge at the core. An explicit solution for the screw dislocation in piezoelectric bimaterial with straight interface is found based on the solution of a similar problem for infinite homogenous medium. The obtained relation is independent of the nature of singularity. This fundamental result is used to analyze dislocation interacting with a set of collinear interfacial cracks in piezoelectric bimaterials. Three solutions for the screw dislocation interacting with a semi-infinite crack, finite crack, and edge crack between two bonded dissimilar piezoelectric materials are obtained in closed-form. These solutions can be used as Green’s functions for the analyses of interfacial cracks in piezoelectric bimaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号