首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The advantage of high efficiency,low SFC (Specific Fuel Consumption),ultra-high bypass ratio turbofan engine attracts more and more attention in modem commercial engine.The intermediate turbine duct (ITD),which connects high pressure turbine (HPT) with low pressure turbine (LPT),has a critical impact on the overall performance of turbine by guiding flow coming from HPT to LPT without too much loss.Therefore,it becomes more and more urgent to master the technique of designing aggressive,even super-aggressive ITD.Much more concerns have been concentrated on the duct.However,in order to further improve turbine,LPT nozzle is arranged into ITD to shorten low pressure axle.With such design concept,it is obvious that LPT nozzle flow field is easily influenced by upstream duct structure,but receives much less interests on the contrary.In this paper,numerical method is used to investigate the effects of length of ITD with upstream swirl blades on LPT nozzle.Nine models with the same swirl and nozzle blades,while the length of ITD is the only parameter to be changed,will be discussed.Finally,several conclusions and advices for designers are summarized.After changing axial length of ducts,inlet and outlet flow field of nozzle differs,correspondingly.On the other hand,the shearing stress on nozzle blade (suction and pressure) surface presents individual feature under various inlet flow.In addition to that,"Clocking-like effect" is described in this paper,which will contribute much to the pressure loss and should be paid enough attention.  相似文献   

2.
In order to improve the efficiency,ultra-high bypass ratio engine attracts more and more attention because of its huge advantage,which has larger diameter low pressure turbine (LPT).This trend will lead to aggressive (high diffusion) intermediate turbine duct (ITD) design.It is necessary to guide the flow leaving high pressure turbine (HPT) to LPT at a larger diameter without any severe loss generating separation or flow disturbances.In this paper,eight ITDs with upstream swirl vanes and downstream LPT nozzle are investigated with the aid of numerical method.These models are modified from a unique ITD prototype,which comes from a real engine.Key parameters like area ratio,inlet height,and non-dimensional length of the ITDs are kept unchanged,while the rising angle (radial offset) is the only changed parameter which ranges from 8 degrees to 45 degrees.In this paper,the effects of rising angle (RA) on ITD,as well as nearby turbines,will be analyzed in detail.According to the investigation results,RA could be as large as 40 degrees in such model of this paper to escape separation;When RA increases,local inlet flow field of LPT nozzle appears to be with apparent variation;while a positive result is that outlet flow field could be kept almost unchanged through modifying blade profile.On the other hand,it seems optimistic that the overall total pressure loss could be kept nearly equivalent among different RA cases.And a valuable conclusion is that outer wall curvature is more important for pressure loss,which advises a clear direction for optimizing ITD.  相似文献   

3.
With the improvement of requirement, design and manufacture technology, aero-engines for the future are characterized by further reduction in fuel consumption, cost, but increment in propulsion efficiency, which leads to ultra-high bypass ratio. The intermediate turbine duct (ITD), which connects the high pressure turbine (HPT) with the low pressure turbine (LPT), has a critical impact on the overall performances of such future engines. Therefore, it becomes more and more urgent to master the design technique of aggressive, even super-aggressive ITDs. Over the last years, a lot of research works about the flow mechanism in the diffuser ducts were carried out. Many achievements were reported, but further investigation should be performed. With the aid of numerical method, this paper focuses on the change of performance and flow field of ITD, as well as nearby turbines, brought by rising angle (RA). Eight ITDs with the same area ratio and length, but different RAs ranges from 8 degrees to 45 degrees, are compared.According to the investigation, flow field, especially outlet Ma of swirl blade is influenced by RA under potential effect, which is advisable for designers to modify HPT rotor blades after changing ITD. In addition to that, low velocity area moves towards upstream until the first bend as RA increases, while pressure loss distribution at S2 stream surface shows that hub boundary layer is more sensitive to RA, and casing layer keeps almost constant. On the other hand, the overall total pressure loss could keep nearly equivalent among different RA cases, which implies the importance of optimization.  相似文献   

4.
In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine duct(ITD).In the current paper,five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft,and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement.However,their bulky geometric size represents a more effective obstacle to flow from high pressure(HP) turbine rotor.These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD,and hence cause higher loss.Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades.According to the computational results,three main conclusions are finally obtained.Firstly,a noticeable low speed area is formed near the strut's leading edge,which is no doubt caused by the potential flow effects.Secondly,more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge.Such boundary layer migration is obvious,especially close to the shroud domain.Meanwhile,radial pressure gradient aggravates this phenomenon.Thirdly,velocity distribution along the strut's pressure side on nozzle's suction surface differs,which means loading variation of the nozzle.And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.  相似文献   

5.
石龚  丰镇平 《热力透平》2012,41(2):106-115
设计研制了具有亚音速透平高压级气动特性的一级半轴流式试验透平,采用试验方法对时序效应、叶栅壁面非定常静压幅频特性以及动叶出口非定常速度场进行了研究。结果表明:时序效应具有改善轴流式透平气动性能的潜力;动、静叶排压力有势场干涉引发的基频信号和上游静叶尾迹片段引发的两阶倍频信号,构成了第二列静叶壁面静压非定常分量的基本频率特征,其间还伴随高达六阶的倍频信号,主要由动叶尾缘高频脱落的涡街扰动产生;尚未完成掺混的第一列静叶尾迹片段出现在动叶出口,由其引发的负射流显著改变了动叶出口局部位置处的气流偏转角。  相似文献   

6.
对某重型燃气轮机透平第一级叶栅通道内无气膜冷却下的三维黏性流动与传热特性进行了数值模拟,对比了不同来流湍流度对叶片燃气侧流动与换热特性的影响,分析了静叶非定常尾迹对动叶换热特性的影响.结果表明:来流湍流度对静叶表面的换热特性有明显的影响,但对动叶表面换热特性的影响很小;静叶尾迹对动叶表面的换热特性影响较大.  相似文献   

7.
水平轴风力机风轮尾迹与圆柱型塔架的相互干涉   总被引:4,自引:0,他引:4  
曹人靖  胡骏 《太阳能学报》2006,27(4):326-330
建立了一个考虑上游风轮尾迹与下游塔架相互干涉的物理模型,并进行了详细的数值模拟。基于Navier-Stokes方程,重点研究了上游尾迹与下游圆柱型塔架相互干涉的二维物理特征、旋涡脱落频率、力的脉动与频谱以及纵向位置的影响;计算的流场与水洞进行的激光诱导荧光显示技术的流场显示结果进行了对比;在相同的横向位置和来流条件下,获得了处于不同纵向位置的干涉结果。研究结果对于揭示风力机风轮尾迹与下游塔架相互干涉的物理机理,减少由于位势干涉和尾迹粘性所诱导的非定常气动力,以及对于风力机的气动弹性稳定性和噪声辐射的研究等都有着重要的理论价值。  相似文献   

8.
脉冲爆震涡轮发动机是未来涡轮发动机的一种有潜力的发展方向。为了厘清具有强非定常性的脉冲爆震来流下涡轮的气动性能及流动特征,为脉冲爆震涡轮发动机涡轮的设计提供技术支撑,采用非定常进口总压与总温边界条件对某单级燃气涡轮开展了瞬态数值仿真计算分析。研究结果表明:由于进口来流的强非定常性,涡轮内部流动在爆震周期的前段时间并未完全建立起流动平衡,故进出口的流量不守恒;焓降功率与扭矩功率、焓降效率与扭矩效率不相等;在一个爆震周期内,动叶进口气流攻角的变化幅度达到40°,出口绝对气流角的变化幅度达到50°。在一个爆震周期中,只有约1/4的时间段涡轮的气动状态接近设计点,故一个爆震周期中涡轮的综合功率较低。  相似文献   

9.
To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically by using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has very small influence on the turbine efficiency in this investigation. The difference between the maximum and minimum efficiency is about 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passes through the mid-channel in the 2nd stator. The wake convective transportation and the blade circulation variation due to its impingement on the subsequent blade are the main mechanism affecting the pressure variation in blade surface.  相似文献   

10.
An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.  相似文献   

11.
To reveal the unsteady flow characteristics of a vaneless counter-rotating turbine (VCRT), a three-dimensional, viscous, unsteady computational fluid dynamics (CFD) analysis was performed. The results show that unsteady simulation is superior to steady simulation because more flow characteristics can be obtained. The unsteady effects in upstream airfoil rows are weaker than those in downstream airfoil rows in the VCRT. The static pressure distribution along the span in the pressure surface of a high pressure turbine stator is more uniform than that in the suction surface. The static pressure distributions along the span in the pressure surfaces and the suction surfaces of a high pressure turbine rotor and a low pressure turbine rotor are all uneven. The numerical results also indicate that the load of a high pressure turbine rotor will increase with the increase of the span. The deviation is very big between the direction of air flow at the outlet of a high pressure turbine rotor and the axial direction. A similar result can also be obtained in the outlet of a low pressure turbine rotor. This means that the specific work of a high pressure turbine rotor and a low pressure turbine rotor is big enough to reach the design objectives. Translated from Journal of Engineering Thermophysics, 2006, 27(1): 35–38 [译自: 工程热物理学报]  相似文献   

12.
可调二级增压柴油机旁通阀特性和调节规律的试验   总被引:3,自引:0,他引:3  
对柴油机应用可调二级增压系统进行了全工况的试验研究.结果表明,涡轮旁通阀可以对增压压力进行调节进而影响柴油机的性能.可调二级增压系统可以增大柴油机中低转速的增压压力,改善碳烟排放;当循环供油量增加后还可以提高中低速时的外特性转矩.中低转速中高负荷时,两级增压会提高进气量改善燃烧,明显地提高了燃油经济性.中高速时,进气量的提高没有明显地改善燃烧的效果,反而造成泵气损失增大,基于经济性考虑应开启涡轮旁通阀,与此同时为避免节流效应压气机旁通阀也应开启将高压级增压器完全旁通,旁通后由于复杂的进排气管增加了流动损失使得油耗略有升高.  相似文献   

13.
对一个用于大推力液体火箭发动机氧涡轮泵的复速级涡轮的喷嘴叶栅进行了试验研究,以考察喷嘴叶栅的气动特性,验证喷嘴叶栅的气体设计。该复速级喷嘴叶栅采用先进的后加载流动控制技术,以减弱叶机的二次流损失,对喷嘴叶栅进行了四个进气口流角,三个出口等熵马赫数条件下的平面叶栅吹风试验,测取了型面压力分布,出口气流角以及叶栅损失等重要气动特性参数,试验研究表明氧涡轮的喷嘴叶栅的设计是成功的,具有良好的气动特性,可以有效地应用于液体火箭发动机的涡轮中,本研究也为该类喷雾叶栅的设计提供了有用的实验数据和指导意义的结论。  相似文献   

14.
采用harmonic非定常计算方法模拟了某型燃气轮机中间三级轴流压气机流场,研究第二级动叶处于不同CLOCKING位置下尾迹输运机理,指出在非定常条件下,叶片排之间干扰主要来自于尾迹和势流对叶片排的交替作用。在CLK0位置,上游尾迹的输运主要表现为单个尾迹向下游的传播过程。在CLK2位置,上游动、静叶片尾迹掺混发生显著不同,上游尾迹的输运呈现多个尾迹的传播过程,进而导致下游叶片非定常气动负荷的波动幅值出现显著差异。  相似文献   

15.
The effects of periodic unsteady flow on heat transfer and aerodynamic characteristics, particularly on the boundary layer transition along the suction and the pressure surfaces of a typical gas turbine blade, are experimentally and theoretically investigated. Comprehensive aerodynamic and heat transfer experimental data are collected for different unsteady passing frequencies that are typical of gas turbines. To predict the effect of the impinging periodic unsteady flow on the heat transfer and the aerodynamics of turbine blades, a new unsteady boundary layer transition model is developed. The model is based on a universal unsteady intermittency function and utilizes an inductive approach that implements the results of comprehensive experimental and theoretical studies of unsteady wake development and the boundary layer flow. Three distinct quantities are identified as primarily responsible for the transition of an unsteady boundary layer: (1) the universal relative intermittency function, (2) maximum intermittency, and (3) minimum intermittency. The analysis of the experimental results and the comparison with the model prediction confirm the validity of the model and its capability to accurately predict the unsteady boundary layer transition.  相似文献   

16.
船用燃气轮机动力涡轮可调导叶级的流场结构   总被引:3,自引:1,他引:2  
基于耦合求解可压缩Favre平均Navier-Stokes方程及Menter的Baseline(BSL)双方程湍流模型.本文对一个考虑可调导叶设计的船用燃气轮机变几何动力涡轮进行了全流场的三维粘性数值模拟。计算结果表明,采用可调导叶技术,涡轮各级热力反动度发生了明显变化;可调导叶级的流动特性变化更显著影响变几何动力涡轮的气动性能;选取具有良好冲角适应性和跨音速性能的可调导叶是船用燃气轮机变几何动力涡轮气动设计的一个关键技术。由此,根据数值计算结果.重点分析可调导叶级的气动特性及其流场结构。  相似文献   

17.
Wind turbine wakes have been recognized as a key issue causing underperformance in existing wind farms. In order to improve the performance and reduce the cost of energy from wind farms, one approach is to develop innovative methods to improve the net capacity factor by reducing wake losses. The output power and characteristics of the wake of a utility‐scale wind turbine under yawed flow is studied to explore the possibility of improving the overall performance of wind farms. Preliminary observations show that the power performance of a turbine does not degrade significantly under yaw conditions up to approximately 10°. Additionally, a yawed wind turbine may be able to deflect its wake in the near‐wake region, changing the wake trajectory downwind, with the progression of the far wake being dependent on several atmospheric factors such as wind streaks. Changes in the blade pitch angle also affect the characteristics of the turbine wake and are also examined in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

A pocket cavity is generated at the junction position of the low pressure turbine (LPT) and the outlet guide vane (OGV) in the rear part of a modern gas turbine jet engine. In the present study, a triangular pocket cavity is placed upstream of an OGV at different distances. The effects of the pocket cavity on heat transfer and fluid flow of the downstream OGV with different flow attack angles are investigated numerically with well validated turbulence models. The flow attack angles are varied as –30°, 0°, and +30° at a constant Reynolds number =160,000. The turbulent flow details are provided by numerical calculations using two turbulence models, the unsteady DES model and the steady k-ω SST model. For different flow attack angles, the high Nusselt number regions around the OGV are changed. The high heat transfer region is really drawn back at a flow attack angle?=?+30° (Case 2b) compared with Case 2a with a flow attack angle =0°. As the flow attack angle is changed to –30° (Case 2c), the high Nusselt number regions are greatly enlarged not only on the suction side also on the pressure side because of the strengthened flow impingement on the vane surfaces. The pocket cavity weakens the flow impingement on the vane surfaces and the effect is more obvious when the pocket cavity is placed close to the vane. In addition, the heat transfer distribution over the pocket surface is also affected by the location of the vane. When the vane is placed close to the pocket cavity (Case 1), the heat transfer on the pocket edge is increased. In the case with a flow attack angle =0°, the high turbulent kinetic energy region is mainly located near the vane and wake region downstream the vane and recirculating flows can hardly be found.  相似文献   

19.
基于Dymola/Mbdelica的航空燃气涡轮访真研究   总被引:1,自引:0,他引:1  
曹源  金先龙  杜朝辉  孟光 《热力透平》2004,33(3):190-194
设计开发新的航空发动机是一项复杂耗时的工程.而计算机仿真是一种有效的解决办法,因此开发比较通用的仿真模型已成为一种发展趋势。本文利用模块化建模的方法.把航空燃气涡轮分为流动模块和容积模块两部分.并采用新型仿真软件Dymola/Modelica编制了相关仿真程序库。该模型库具有层次化的结构,以及可扩展、标准化的特点。以涡轮为例建立了可扩展的航空燃气涡轮程序库,并利用该程序库与其它模型库结合.搭建了一个带开关磁阻电机的混合排气航空发动机模型,得到了合理的仿真结果.验证了该方法的可行性及推广应用价值。  相似文献   

20.
途述了带外函道的双转子发动机内、外函分流,各自通流阻力可以改变的燃气发生器试验装置和试验结果。本燃气发生器试验结果将为涡轮风扇发动机在陆上应用提供有价值的试验数据和发动机改装途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号