首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Double-pipe helical heat exchangers are integral to contemporary mechanical refrigeration equipment. Modification of flow geometry has been widely adopted to enhance heat transfer performance of a heat exchanger. The objective of this study is to numerically investigate heat transfer and entropy generation in a double pipe helical heat exchanger with various cross-sections. A computational model for laminar convective heat transfer was developed and validated against the results from previously published literature. To capture entropy generation, the entropy balance equation for open system is adopted. Effect of inner pipe Dean number, inner pipe and annulus inlet mass flow rate ratio, eccentricity, and flow configuration (co-flow and counter-flow) were examined and discussed in light of computational results. To ensure fair comparison, the considered geometries have same inner pipe cross-section area, same annulus cross-section area, and same outer surface area of inner pipe. The results suggest that square cross-section offers best performance in term of heat transfer, pressure drop and entropy generation. In addition, concentric configuration is more appropriate for low flow rate application while eccentric outer configuration is more suitable for high flow rate application.  相似文献   

2.
This article presents a cross-flow plate-type heat exchanger that has been studied and manufactured in laboratory conditions because of its effective use in waste heat recovery systems. This new heat exchanger was tested with an applicable experimental setup, considering temperatures, velocity of the air, and the pressure losses occurring in the system. These variables were measured and the efficiency of the system was determined. The irreversibility of the heat exchanger was taken into consideration, while the design of the heat exchanger was such that the minimum entropy generation number was analyzed with respect to the second law of thermodynamics in the cross-flow heat exchanger. The minimum entropy generation number depends on the parameters called the optimum flow path length and dimensionless mass velocity. Variations of the entropy generation number with these parameters are analyzed.  相似文献   

3.
This study investigates the entropy generation in a crossflow heat exchanger including three gas streams and the effect of longitudinal wall conduction on the entropy generation. Using the numerical method, this study calculates the exit mean temperature of each stream, and then computes the number of entropy generation units. The results indicate that the entropy generation increases with the decrease of inlet temperature of gas stream 3 and the decrease of inlet temperature ratio of gas streams 1 to 2. In addition, the results show that the longitudinal wall conduction raises the entropy generation and that this raising increases with increasing NTU when heat capacity rate ratio of stream 1 is 0.5.  相似文献   

4.
Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur–iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a cooling system for the secondary helium of the IHX is required. In this paper, a conceptual flow diagram of the coupling system has been proposed. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the conceptual design of the cooling system for the secondary helium of the IHX with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out.  相似文献   

5.
Analytical analysis of unbalanced heat exchangers is carried out to study the second law thermodynamic performance parameter through second law efficiency by varying length‐to‐diameter ratio for counter flow and parallel flow configurations. In a single closed form expression, three important irreversibilities occurring in the heat exchangers—namely, due to heat transfer, pressure drop, and imbalance between the mass flow streams—are considered, which is not possible in first law thermodynamic analysis. The study is carried out by giving special influence to geometric characteristics like tube length‐to‐diameter dimensions; working conditions like changing heat capacity ratio, changing the value of maximum heat capacity rate on the hot stream and cold stream separately and fluid flow type, i.e., laminar and turbulent flows for a fully developed condition. Further, second law efficiency analysis is carried out for condenser and evaporator heat exchangers by varying the effectiveness and number of heat transfer units for different values of inlet temperature to reference the temperature ratio by considering heat transfer irreversibility. Optimum heat exchanger geometrical dimensions, namely length‐to‐diameter ratio can be obtained from the second law analysis corresponding to lower total entropy generation and higher second law efficiency. Second law analysis incorporates all the heat exchanger irreversibilities. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21109  相似文献   

6.
This paper presents a theoretical analysis of a heat exchanger with a negligible fluid flow pressure drop to determine whether it is better to operate the heat exchanger with the minimum or maximum heat capacity rate of the hot fluid from entropy generation point of view. Entropy generation numbers are derived for both cases, and the results show that they are identical, when the heat exchanger is running at a heat capacity ratio of 0.5 with heat exchanger effectiveness equaling 1. An entropy generation number ratio is defined for the first time, which has a maximum value at ε = 1/(1+R) for any inlet temperature ratio. When R equals 0.1, 0.5 and 0.9, the entropy generation number ratio receives a maximum value at an effectiveness equaling 0.91, 0.67 and 0.526, respectively. When R=0.9, the entropy generation number ratio is the same for all inlet temperature ratios at ε=0.8. The results show that the entropy generation number ratio is far from 1 depending on the inlet temperature ratio of the cold and hot fluid. The results are valid for parallel‐flow and counterflow heat exchangers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
为了提高折流板换热器的换热性能,改变了折流板换热器的折弯夹角和折流板间距,利用ANSYS Fluent对换热器壳程流体流动与换热过程进行模拟,分析了不同折流板折弯夹角α (110°,135°,170°和180°)、折流板间距(250,300和350 mm)和雷诺数(10 000,20 000和50 000)对换热器壳程压力、速度和温度的影响。结果表明:增大雷诺数对改善流动死区有很大的作用,雷诺数为50 000时的流动死区相对于雷诺数为10 000时面积减小较大;随着夹角α的减小,折流板背流侧的流动死区面积逐渐减小、换热器的表面传热系数和进出口压降力越大,夹角α为110°时出口温度最小、进出口压降最大,夹角α为135°时PEC最大且换热器综合性能最优;折流板间距增大,压力变化梯度减小,压差变化幅度减小,壳程出口温度变化不成正比关系,间距为300 mm时出口温度最低。  相似文献   

8.
余敏  马俊杰  卢玫  李凌 《动力工程》2007,27(4):584-587
根据热力学第二定律,对传热强化管管内热力过程进行熵产分析,建立了基于流动与传热过程熵增原理的管内传热熵产方程,导出恒热流和恒壁温2种常见工况下的无因次熵产数表达式.在不同雷诺数和进口温差条件下,对2种螺旋槽管和光管进行恒壁温工况的熵产分析和热力性能评价,分析了传热和流动摩阻引起的熵产变化规律及2种不可逆损失占总熵产的份额.结果表明,熵产分析可用于评价传热强化管的综合热力性能,确定合理的运行工况、结构参数及强化换热形式,为强化管的应用评估及优化设计提供参考.  相似文献   

9.
In the present work, a new shell-and-tube heat exchanger optimization design approach is developed, wherein the dimensionless entropy generation rate obtained by scaling the entropy generation on the ratio of the heat transfer rate to the inlet temperature of cold fluid is employed as the objective function, some geometrical parameters of the shell-and-tube heat exchanger are taken as the design variables and the genetic algorithm is applied to solve the associated optimization problem. It is shown that for the case that the heat duty is given, not only can the optimization design increase the heat exchanger effectiveness significantly, but also decrease the pumping power dramatically. In the case that the heat transfer area is fixed, the benefit from the increase of the heat exchanger effectiveness is much more than the increasing cost of the pumping power.  相似文献   

10.
In the present study, the theoretical and experimental results of the second law analysis on the heat transfer and flow of a horizontal concentric tube heat exchanger are presented. The experiments setup are designed and constructed for the measured data. Hot water and cold water are used as working fluids. The test runs are done at the hot and cold water mass flow rates ranging between 0.02 and 0.20 kg/s and between 0.02 and 0.20 kg/s, respectively. The inlet hot water and inlet cold water temperatures are between 40 and 50 °C, and between 15 and 20 °C, respectively. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer characteristics, entropy generation, and exergy loss are discussed. The mathematical model based on the conservation equations of energy is developed and solved by the central finite difference method to obtain temperature distribution, entropy generation, and exergy loss. The predicted results obtained from the model are validated by comparing with the present measured data. There is reasonable agreement from the comparison between predicted results and those from the measured data.  相似文献   

11.
The air inlet flow direction is not orthogonal to the heat exchanger surface in many cases. To study the performance of the heat transfer and pressure drop of a heat exchanger with different air inlet angles, this paper shows the experimental system about a finned oval-tube heat exchanger inclined toward the air incoming flow direction. The heat transfer and pressure drop characteristics of four air inlet angles (90°, 60°, 45°, and 30°) are studied separately for the Reynolds number ranging from 1300 to 13000 in this study. The experimental correlations of Nusselt number and resistance coefficient of the air side are acquired. The results show that the overall heat transfer coefficients become smaller and smaller with the decrease of the air inlet angles, while the pressure drops have significant changes. The heat transfer performances of the heat exchanger under the three inclined air inlet angles are worse than that at 90°. Among the three inclined angles, the performance at 45° is the best under identical mass flow rate criterion and at low Reynolds number under identical pressure drop criterion; that at 60° is the best at large Reynolds under identical pressure drop criterion. Finally, some conclusions are attained about the effects of the air inlet angles on the heat transfer and pressure drop performance of the finned oval-tube heat exchanger.  相似文献   

12.
The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32–40 °C has been controlled, while the inlet return air temperature is kept constant at about 26 °C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40 °C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes.  相似文献   

13.
In this paper, an experimental study of the condensation of water vapor from a binary mixture of air and low‐grade steam has been depicted. The study is based upon diffusion heat transfer in the presence of high concentration of noncondensable gas. To simplify the study, experimental analysis is supported by empirical solutions. The experimental setup is custom designed for testing a new shell and tube type heat exchanger supplied by the manufacturer. Air–vapor mixture at 80 °C (max) and 20.2% relative humidity enters the heat exchanger at a mass flow rate of 480 kg/h and condenses 27 kg/h vapor using cooling water at an inlet temperature of 7 °C to 10 °C and mass flow rate of 3500 kg/h. By using the experimental data of constant inlet air mass fraction, mixture gas velocity, and different volumetric flow rate of the cold fluid, the local heat transfer coefficients are obtained. The main objective of this work is to establish an approximate value for surface area and overall heat transfer coefficient of a horizontal shell and tube condenser used in process space. Under designed working conditions, the condenser is found to work efficiently with 90% vapor condensation by mass.  相似文献   

14.
On the basis of experimental verification of mathematical model, the influence of honeycomb ceramic on heat extraction is numerically studied under the steady state condition. The calculation results show the packed honeycomb ceramic influences the extracted heat of heat exchanger by changing the flow field while not radiation heat transfer of heat exchanger outer wall, and the difference between the extracted heat of heat exchanger embedded in packed bed and that of heat exchanger in empty bad is gradually obvious with gas temperature increasing under the condition of the same gas mass flow rate. In addition, under the same operating condition, when the two characteristic sizes of heat extraction zone honeycomb ceramic in the vertical gas flow direction increase, the extracted heat of embedded heat exchanger shows a trend of first increase while extracted heat of embedded heat exchanger shows a trend of decrease because the decreasing of the windward and leeward side gas flow velocity of heat exchanger results into weakening of convective heat transfer of embedded heat exchanger outer wall.  相似文献   

15.
应用地表水源采集凝固热热泵系统,能够在寒区地区冬季地表水温较低的不利条件下,满足供热要求的同时,产生显著节能与环保效益。凝固热采集装置(系统)作为该热泵系统关键部分之一,其运行工况直接关系到系统整体运行性能。基于熵产分析方法确定了地表水对流换热与凝固导热等熵产率及刮冰周期内装置平均熵产率等与水源Re数、管壁温等变量间的相互关系,研究了凝固热采集装置主要参数对运行热不可逆性的影响。结果表明,对流换热不可逆性在装置(系统)热不可逆性中占90%以上,起主导作用。因此设计过程中,地表水流量选取应适中,同时,为兼顾热泵机组高效性,管壁温也不宜选取过低。  相似文献   

16.
K. N. Yogish 《传热工程》2013,34(3):244-261
Optimization of a parallel flow gas-to-gas tubular micro heat exchanger with hot core and cold annulus fluid is numerically analyzed, considering the beneficial role of surface radiation. Operating and geometric parameters are varied for fixed overall mass flow rate and temperature of cold core fluid, to study the effects on the following performance parameters: heat transferred to annulus fluid, logarithmic mean temperature difference, effectiveness, and volumetric heat transfer coefficient. The micro heat exchanger is optimized for high heat transfer to annulus fluid and volumetric heat transfer coefficient, for different operating and geometric conditions. Optimization for high volumetric heat transfer coefficient maximizes the micro heat exchanger effectiveness, heat transferred and improves logarithmic mean temperature difference.  相似文献   

17.
This paper conflates two heat exchanger design approaches – the ε-Ntu (effectiveness–number of transfer units) and the EGM (entropy generation minimization) – focusing on heat exchangers with uniform wall temperature, i.e. condensers and evaporators. An algebraic formulation which expresses the dimensionless rate of entropy generation as a function of the heat exchanger geometry (number of transfer units), the thermal-hydraulic characteristics (friction factor and Colburn j-factor), and the operating conditions (heat transfer duty, core velocity, surface temperature, and fluid properties) is derived. It is shown that there does exist a particular number of transfer units which minimizes the dimensionless rate of entropy generation. An algebraic expression for the optimum heat exchanger effectiveness, based on the working conditions, heat exchanger geometry and fluid properties, is also presented. The theoretical analysis led to the conclusion that a high effectiveness heat exchanger design does not necessarily provide the best thermal-hydraulic performance.  相似文献   

18.
A heat exchanger with a shallow gas–solid fluidized bed was experimentally studied in order to analyze energy recovery from solid particles leaving a combustion process. The experiments were carried out with and without vertical baffles in a fluidized bed with immersed horizontal tubes filled with water, in a counter flow arrangement. Two particle diameters (254 and 385 μm), two solid flow rates (50 and 80 kg/h) and two gas flow rates (46 and 50 kg/h) were tested. The bed temperature along the equipment length, the mass flow rate and the inlet and outlet temperatures of solid particles, air and water were measured in order to obtain the bed-tube heat transfer coefficient and the heat exchanger effectiveness. An increment of about 55% in the heat transfer coefficient and higher values of the heat exchanger effectiveness, in experiments with the presence of baffles, was verified. The experimental results also showed that the suspension-wall heat transfer coefficient increased considerably with the solid flow rate and also when the particle diameter decreased.  相似文献   

19.
In recent years a great deal of attention is focussed on the efficient utilization of energy resources with minimum heat loss. There is a growing interest on second law analysis to minimize the entropy generation in various thermal units and thereby to improve and optimize the design and performance. In the present work, a waste heat recovery steam generator is considered, which consists of an economizer, an evaporator and a super heater. The unit produces superheated steam by absorbing heat from the hot flue gases. A general equation for the entropy generation has been proposed, which incorporates all the irreversibilities associated with the process. By using suitable non-dimensional operating parameters, an equation for entropy generation number is derived. The effect of various non-dimensional operating parameters, on the entropy generation number are investigated. The role of gas specific heat, non-dimensional inlet gas temperature difference ratio (τ), heat exchanger unit sizes (NTUB, NTUS, NTUE) on entropy generation number are also reported. The results will help to understand the influence of different non-dimensional operating parameters on entropy generation number, which in turn will be useful to optimize the performance of the unit.  相似文献   

20.
The influence of reducing dimensions to microscale on the performance parameters of parallel flow tubular micro heat exchanger is numerically analyzed considering the thermophysical property variation effect. Also, the improvement in convective heat transfer coefficient, at a given temperature, with the decrease in dimensions to microscale is investigated. In the micro heat exchanger, conventional method fails to give accurate performance analysis due to significant property variation. So, a new temperature difference, i.e. mean temperature difference correlation considering the property variation effect is derived. Operating conditions and geometric parameters are varied, keeping the inlet temperature of the both fluids and inlet velocity of the cold fluid fixed. The following performance parameters are evaluated: effectiveness, volumetric heat transfer coefficient, mean temperature difference, and log mean temperature difference. The reliability of the new mean temperature difference method is checked by calculating the percentage deviation between mean temperature difference and log mean temperature difference value for macroscale to microscale heat transfer. The results show that percentage deviation is maximum at microscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号