首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the size of CMOS devices is scaled down to lower the power consumption and space occupied on the chip to the nano-scale, unfortunately, noise is not reduced accordingly. As a result, interference due to noise can significantly affect circuit performance and operation. Since noises are random and dynamic in nature, probabilistic noise-tolerant approaches are more desirable to handle this problem. However, trade-offs between hardware complexity and noise-tolerance are severe design challenges in the probabilistic-based noise-tolerant approaches. In this paper, we proposed a cost-effective common-feedback probabilistic-based noise-tolerant VLSI circuit based on Markov random field (MRF) theory. We proposed a common latch feedback method to lower the hardware complexity. To further enhance the noise-tolerant ability, the common latch feedback technique is combined with Schmitt trigger. To demonstrate the proof-of-concept design, a 16-bit carry-lookahead adder was implemented in the TSMC 90 nm CMOS process technology. As compared with the state-of-art master-and-slave MRF design, the experimental results show that not only the transistor count can be saved by 20%, the noise-tolerant performance can also be enhanced from 18.1 dB to 24.2 dB in the proposed common feedback MRF design.  相似文献   

2.
As the size of CMOS devices is scaled down to nanometers, noise can significantly affect circuit performance. Because noise is random and dynamic in nature, a probabilistic-based approach is better suited to handle these types of errors compared with conventional CMOS designs. In this paper, we propose a cost-effective probabilistic-based noise-tolerant circuit-design methodology. Our cost-effective method is based on master-and-slave Markov random field (MRF) mapping and master-and-slave MRF logic-gate construction. The resulting probabilistic-based MRF circuit trades hardware cost for circuit reliability. To demonstrate a noise-tolerant performance, an 8-bit MRF carry-lookahead adder (MRF_CLA) was implemented using the 0.13-${rm mu}hbox{m}$ CMOS process technology. The chip measurement results show that the proposed master-and-slave MRF_CLA can provide a $7.00times 10^{-5}$ bit-error rate (BER) under 10.6-dB signal-to-noise ratio, while the conventional CMOS_CLA can only provide $8.84times 10^{-3}$ BER. Because of high noise immunity, the master-and-slave MRF_CLA can operate under 0.25 V to tolerate noise interference with only 1.9 ${rm mu}hbox{W/MHz}$ of energy consumption. Moreover, the transistor count can be reduced by 42% as compared with the direct-mapping MRF_CLA design .   相似文献   

3.
As CMOS technology is scaled down, the supply voltage and gate capacitance are reduced, which results in the reduction of charge storing capacity at each node and increase of the susceptibility to external noise in radiation environments. The traditional error tolerant circuit design methods provide very limited protection against the environment noise for storage cells such as latches and memories. In this paper, a novel hardened latch design is proposed and compared with the previous hardened latch designs using 32 nm technology node. Extensive simulation results using HSPICE are reported to show that the proposed hardened latch design achieves 15× improvement of critical charge (Qcrit) with comparable cost in terms of speed and power compared to the most up to date hardened latch design. Moreover, PVT variations have great impact on the reliability of hardened circuit. The proposed latch circuit is also evaluated with the presence of PVT variations and demonstrates higher robustness than other considered robust latch under severe PVT variation condition.  相似文献   

4.
This paper describes a new circuit technique for designing noise-tolerant dynamic logic. It is shown that voltage scaling aggravates the crosstalk noise problem and reduces circuit noise immunity, motivating the need for noise-tolerant circuit design. In a 0.35-μm CMOS technology and at a given supply voltage, the proposed technique provides an improvement in noise immunity of 1.8×(for an AND gate) and 2.5×(for an adder carry chain) over domino at the same speed. A multiply-accumulate circuit has been designed and fabricated using a 0.35-μm process to verify this technique. Experimental results indicate that the proposed technique provides a significant improvement in the noise immunity of dynamic circuits (>2.4x) with only a modest increase in power dissipation (15%) and no loss in throughput  相似文献   

5.
In this paper, we present a noise-tolerant high-performance static circuit family suitable for low-voltage operation called skewed logic. Skewed logic circuits in comparison with Domino logic have better scalability and are more suitable for low voltage applications because of better noise margins. Skewed logic and its variations have been compared with Domino logic in terms of delay, power, and dynamic noise margin. A design methodology for skewed CMOS pipelined circuits has been developed. To demonstrate the applicability of the proposed logic style, 0.35 /spl mu/m 5.56 ns CMOS 16/spl times/16 bit multipliers have been designed using skewed logic circuits and fabricated through MOSIS. Measurement results show that the multiplier only consumed a power of 195 mW due to its low clock load.  相似文献   

6.
Soft-error interference is a crucial design challenge in the advanced CMOS VLSI circuit designs. In this paper, we proposed a SEU Isolating DICE latch (Iso-DICE) design by combing the new proposed soft-error isolating technique and the inter-latching technique used in the DICE (Calin et al., 1996 [1]) design. To further enhance SEU-tolerance of DICE design, we keep the storage node pairs having the ability to recover the SEU fault occurring in each other pair but also avoid the storage node to be affected by each other. To mitigate the interference effect between dual storage node pairs, we use the isolation mechanism to resist high energy particle strikes instead of the original interlocking design method. Through isolating the output nodes and the internal circuit nodes, the Iso-DICE latch can possess more superior SEU-tolerance as compared with the DICE design (Calin et al., 1996 [1]). As compared with the FERST design (Fazeli, 2009 [2]) which performs with the same superior SEU-tolerance, the proposed Iso-DICE latch consumes 50% less power with only 45% of power delay product in TSMC 90 nm CMOS technology. Under 22 nm PTM model, the proposed Iso-DICE latch can also perform with 11% power delay product saving as compared with the FERST design (Fazeli, 2009 [2]) that performs with the same superior SEU-tolerance.  相似文献   

7.
The design and characterization of a low-voltage, high-speed CMOS analog latched voltage comparator based on the flipped voltage follower (FVF) cell and input signal regeneration is presented. The proposed circuit consists of a differential input stage with a common-mode signal detector, followed by a regenerative latch and a Set-Reset (S-R) latch. It is suitable for successive-approximation type’s analog-to-digital converters (ADC), but can also be adapted for use in flash-type ADCs. The circuit was fabricated using 0.18 μm CMOS technology, and its measured performance shows 12-bit resolution at 20 MHz comparison rate and 1 V single supply voltage, with a total power consumption of 63.5 μW.  相似文献   

8.
In this paper, an efficient positive feedback source-coupled logic (PFSCL) D latch topology is proposed. It uses triple-tail cell concept which results in lesser number of stages as well as gate count in comparison to the traditional PFSCL D latch. The operation of the proposed D latch is described and is supported with mathematical formulations. The functionality is verified through SPICE simulations using TSMC 0.18 µm CMOS technology parameters. It is found that the proposed D latch topology significantly reduces the power consumption and delay in comparison to the traditional PFSCL D latch. The impact of process variation on the proposed and traditional PFSCL D latch at different design corners shows similar variations.  相似文献   

9.
In this paper, an improved current mode logic (CML) latch design is proposed for high‐speed on‐chip applications. Transceivers use various methods in fast data transmission in wireless/wire‐line application. For an asynchronous transceiver, the improved CML latch is designed using additional NMOS transistors in conventional CML latch which helps to boost the output voltage swing. The proposed low‐power CML latch‐based frequency divider is compatible for higher operating frequency (16 GHz). Next, the delay model is also developed based on small signal equivalent circuit for the analysis of the proposed latch. The output voltage behavior of the proposed latch is analyzed using 180‐nm standard CMOS technology.  相似文献   

10.
New true-single-phase-clocking (TSPC) BiCMOS/BiNMOS/BiPMOS dynamic logic circuits and BiCMOS/BiNMOS dynamic latch logic circuits for high-speed dynamic pipelined system applications are proposed and analyzed. In the proposed circuits, the bootstrapping technique is utilized to achieve fast near-full-swing operation. The circuit performance of the proposed new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications are simulated by using HSPICE with 1 μm BiCMOS technology. Simulation results have shown that the new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications have better speed performance than that of CMOS and other BiCMOS dynamic logic circuits as the supply voltage is scaled down to 2 V. The operating frequency and power dissipation/MHz of the pipelined system, which is constructed by the new clock-high-evaluate-BiCMOS dynamic latch logic circuit and clock-low-evaluate-BiCMOS (BiNMOS) dynamic latch logic circuit, and the logic units with two stacked MOS transistors, are about 2.36 (2.2) times and 1.15 (1.1) times those of the CMOS TSPC dynamic logic under 1.5-pF output loading at 2 V, respectively. Moreover, the chip area of these two BiCMOS pipelined systems is about 1.9 times and 1.7 times as compared with that of the CMOS TSPC pipelined system. A two-input dynamic AND gate fabricated with 1 μm BiCMOS technology verifies the speed advantage of the new BiNMOS dynamic logic circuit. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed new dynamic logic circuits and dynamic latch logic circuits are feasible for high-speed, low-voltage dynamic pipelined system applications  相似文献   

11.
SET-based nano-circuit simulation and design method using HSPICE   总被引:2,自引:0,他引:2  
This paper presents a simulation and design method for complementary SET-based nano-circuits from a practical circuit design point of view. HSPICE behavioral implementation of modified Lientschnig's SET model based on the orthodox theory and the Birth-Death Markov chain is demonstrated and verified with Coulomb characteristics. It shows reduced CPU time, improvement of accuracy, and more compatibility with other SPICE softwares on both Windows and Unix platforms. The proposed design methodology presents how to build static CMOS-like SET circuits, and demonstrates that conventional CMOS circuit design methodologies are all applicable to SET circuit designs based on the methodology. HSPICE simulation results show that, for 1 MΩ junction resistance, the power consumption of a SET NAND2 gate is less than 0.3 pW, and the propagation delay for a SET XOR2 gate is 29.8 ns while driving a 10 aF load.  相似文献   

12.
Dynamic CMOS logic circuits are widely employed in high-performance VLSI chips in pursuing very high system performance. However, dynamic CMOS gates are inherently less resistant to noises than static CMOS gates. With the increasing stringent noise requirement due to aggressive technology scaling, the noise tolerance of dynamic circuits has to be first improved for the overall reliable operation of VLSI chips designed using deep submicron process technology. In the literature, a number of design techniques have been proposed to enhance the noise tolerance of dynamic logic gates. An overview and classification of these techniques are first presented in this paper. Then, we introduce a novel noise-tolerant design technique using circuitry exhibiting a negative differential resistance effect. We have demonstrated through analysis and simulation that using the proposed method the noise tolerance of dynamic logic gates can be improved beyond the level of static CMOS logic gates while the performance advantage of dynamic circuits is still retained. Simulation results on large fan-in dynamic CMOS logic gates have shown that, at a supply voltage of 1.6 V, the input noise immunity level can be increased to 0.8 V for about 10% delay overhead and to 1.0 V for only about 20% delay overhead.  相似文献   

13.
Increasing in device parameter variations is the critical issue in very deep sub-micron regime due to continue scaling of the transistor dimensions. The overall performance yield of the logic circuit is diminished by raising leakage current and variability issues in scaled devices. In this article; we have proposed an approach called INDEP, based on Boolean logic calculation for the input signals of the extra inserted transistors between the pull-up and pull-down network of the CMOS logic. INDEP approach is not only reduces the leakage current but also mitigates the variability issues with minimum susceptible delay paths. Various process, voltage and temperature (PVT) variations are analyzed at 22 nm BSIM4 bulk CMOS PTM technology node for chain of 5-inverters using HSPICE tool. Several guidelines are provided to design the variability aware CMOS circuits in nanoscale regime by considering the leakage current variation. INDEP approach works effectively in both active as well as standby state of the circuit and keeping the modal performance characteristics of the CMOS gate. The electrical simulation results show that our proposed INDEP approach is less susceptible to PVT variations as compared to conventional circuit. The Monte-Carlo simulation results confirm that average INDEP leakage current reduction is 62.31% at ±20% PVT variations under 3σ Gaussian distribution for chain of 5-inverters.  相似文献   

14.
This paper presents a detailed study on the impact of a floating body in partially depleted (PD) silicon-on-insulator (SOI) MOSFET's on various CMOS circuits. Digital very large scale integration (VLSI) CMOS circuit families including static and dynamic CMOS logic, static cascade voltage switch logic (static CVSL), and dynamic cascade voltage switch logic (dynamic CVSL) are investigated with particular emphasis on circuit topologies where the parasitic bipolar effect resulting from the floating body affects the circuit operation and stability. Commonly used circuit building blocks for fast arithmetic operations in processor data-flow, such as static and dynamic carry lookahead circuits and Manchester carry chains, are examined. Pass-transistor-based designs including latch, multiplexer, and pseudo two-phase dynamic logic are then discussed. It is shown that under certain circuit topologies and switching patterns, the parasitic bipolar effect causes extra power consumption and degrades the noise margin and stability of the circuits. In certain dynamic circuits, the parasitic bipolar effect is shown to cause logic state error if not properly accounted for  相似文献   

15.
Dual threshold voltages domino design methodology utilizes low threshold voltages for all transistors that can switch during the evaluate mode and utilizes high threshold voltages for all transistors that can switch during the precharge modes. We employed standby switch can strongly turn off all of the high threshold voltage transistors which enhances the effectiveness of a dual threshold voltage CMOS technology to reduce the subthreshold leakage current. Subthreshold leakage currents are especially important in burst mode type integrated circuits where the majority of the time for system is in an idle mode. The standby switch allowed a domino system enters and leaves a low leakage standby mode within a single clock cycle. In addition, we combined domino dynamic circuits style with pass transistor XNOR and CMOS NAND gates to realize logic 1 output during its precharge phase, but not affects circuits operation in its evaluation and standby phase. The first stage NAND gates output logic 1 can guarantee the second stage computation its correct logic function when system is in a cascaded operation mode. The processing required for dual threshold voltage circuit configuration is to provide an extra threshold voltage involves only an additional implant processing step, but performs lower dynamic power consumption, lower delay and high fan-out, high switching frequencies circuits characteristics. SPICE simulation for our proposed circuits were made using a 0.18 µm CMOS process from TSMC, with 10 fF capacitive loads in all output nodes, using the parameters for typical process corner at 25 °C, the simulation results demonstrated that our designed 8-bit carry look-ahead adders reduced chip area, power consumption and propagation delay time more than 40%, 45% and around 20%, respectively. Wafer based our design were fabricated and measured, the measured data were listed and compared with simulation data and prior works. SPICE simulation also manifested lower sensitivity of our design to power supply, temperature, capacitive load and process variations than the dynamic CMOS technologies.  相似文献   

16.
A wide band, differentially switch-tuned CMOS monolithic LC-VCO is presented in this paper, as well as a frequency divider for high linearity, low Kvco quadrature signal generation. A linearity control logic is proposed. The Kvco linearity is improved to be lower than 17.68 MHz/V. By using the proposed CML DFF, the operating frequency of the frequency divider is increased by 20% with a power consumption of 3.6 mW. The proposed design has been fabricated and verified in a 0.18 μm CMOS process. The QVCO is tuned in a combined way of continuous technology and 4 bit binary switch capacitor array (SCA) discrete tuning technology. The measurement indicates that the QVCO has a 19.7% tuning range from 1.816 to 2.213 GHz. The measured phase noise is −112.25 dBc/Hz at 1 MHz offset from the 1.819 GHz carrier and draws a current of 4.0 mA around at a 1.8 V supply.  相似文献   

17.
一种单锁存器CMOS三值D型边沿触发器设计   总被引:7,自引:0,他引:7       下载免费PDF全文
杭国强  吴训威 《电子学报》2002,30(5):760-762
提出了一种只使用单个锁存器的CMOS三值D型边沿触发器设计.该电路是通过时钟信号的上升沿后产生的窄脉冲使锁存器瞬时导通完成取样求值.所提出的电路较之以往设计具有更为简单的结构,三值双轨输出时仅需24个MOS管.计算机模拟结果验证了所提出的触发器具有正确的逻辑功能、良好的瞬态特性和更低的功耗.此外,该设计结构极易推广至基值更高的多值边沿触发器的设计.  相似文献   

18.
In this paper we present a fully integrated current reuse CMOS LNA (low noise amplifier) with modified input matching circuitry and inductive inter-stage architecture in 0.18 μm CMOS technology. To reduce the large spiral inductors that actually require larger surface area for their fabrication, two parallel LC circuits are used with two small spiral on-chip inductors. Using cascode configuration equipped by parallel inter-stage LCs, we achieved lower power consumption with higher power gain. In this configuration we used two cascoded transistors to have a good output swing suitable for low voltage technology compared to other current reuse configurations. This configuration provides better input matching, lower noise figure and more reverse isolation which is vital in LNA design. Complete analytical simulation of the circuit results in center frequency of 5.5 GHz, with 1.9 dB NF, 50 Ω input impedance, 1 GHz 3 dB power bandwidth, 20.5 dB power gain (S21), high reverse isolation (S12)<−48 dB, −18.5 dB input matching (S11) and −21.3 dB output matching (S22), while dissipating as low power as 2 mW at 1.8 V power supply.  相似文献   

19.
反馈环路是模拟电路中有效容错的电路结构。反馈电路也因其存储性能而被广泛使用于数字电路的时序电路中,但是反馈电路在数字电路的组合电路的稳定特性鲜少被人研究,尤其是低功耗应用。以马氏随机场为理论的MRF电路以其低功耗下的高稳定性得到研究和关注,但其电路的反馈结构缺乏理论支持和依据,因此马氏随机场电路的容错特性未被清晰得以解释。该文以利用概率CMOS建模概率门来分析MRF核心反馈环NAND-NAND,从理论上证明了反馈电路输出的计算正确概率具有递增且上有界的特点,并数学证明了MRF的核心反馈环电路具有优于传统CMOS电路的容错性能。其理论推导结果与测试结果呈现一致性。  相似文献   

20.
A novel logic family, called charge recycling differential logic (CRDL), has been proposed and analyzed. CRDL reduces power consumption by utilizing a charge recycling technique with the speed comparable to those of conventional dynamic logic circuits. It has an additional benefit of improved noise margin due to inherently static operation. The noise margin problem of true single-phase-clock latch (TSPC) is also eliminated when a CRDL logic circuit is connected to it. Two swing-suppressed-input latches (SSILs), which are introduced for use with CRDL, have better performance than the conventional transmission gate latch. Moreover, a pipeline configuration with CRDL in a true two-phase clocking scheme shows completely race-free operation with no constraints on logic composition. Eight-bit Manchester carry chains and full adders were fabricated using a 0.8 μm single-poly double-metal n-well CMOS technology to verify the relative performance of the proposed logic family. The measurement results indicate that about 16-48% improvements in power-delay product are obtained compared with differential cascode voltage switch (DCVS) logic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号